

Directionality for DM Direct Detection

At low energy, how to distinguish (DM) signal from (SM) background?

Directionality: if the scattering rate depends on the detector orientation,

then the scattering rate **modulates** every 23 hours 56 minutes

Directionality for DM Direct Detection

Some DM detector targets have **intrinsically anisotropic** scattering rates:

- **DM–electron:** via asymmetric electronic wavefunctions
- **DM-nucleon (Migdal):** from asymmetric potential on nuclei

Newly Challenging Rate Calculation:

$$Astrophysics \qquad Particle Physics (DM-SM)$$

$$R_{s} = N_{\rm SM} n_{\chi} \bar{\sigma}_{0} \int \frac{d^{3}q}{4\pi \mu_{\chi \rm SM}^{2}} \int d^{3}v \, g_{\chi}(\mathbf{v}) \times \delta\left(\omega_{s} + \frac{q^{2}}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v}\right) F_{\rm DM}^{2}(q) \times f_{s}^{2}(\mathbf{q})$$

With **directionality**, what was a 2d integral is now a 6d integral:

Repeat for every...

- **DM mass and** F_{DM} 50 10²
- velocity distribution $1-10^3$
- detector form factor $1 10^2$
- detector orientation $1-10^4$
- **TOTAL:** $50 10^{11}$

SM Detector Physics

BEN LILLARD – UOREGON

Vector Spaces for Dark Matter (VSDM)

github: <u>https://github.com/blillard/vsdm</u> arXiv: <u>2310.01480</u> and <u>2310.01483</u>

$$R_{s} = N_{\rm SM} n_{\chi} \bar{\sigma}_{0} \int \frac{d^{3}q}{4\pi \mu_{\chi \rm SM}^{2}} \int d^{3}v \, g_{\chi}(\mathbf{v}) \times \delta \left(\Delta E + \frac{q^{2}}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v}\right) F_{\rm DM}^{2}(q) \times f_{s}^{2}(\mathbf{q})$$
$$R_{s} = \frac{N_{\rm SM} n_{\chi} \bar{\sigma}_{0}}{4\pi \mu_{\chi \rm SM}^{2}} \langle g_{\chi} | \phi_{v} \rangle \cdot \left\langle \phi_{v} \left| \delta \left(\Delta E + \frac{q^{2}}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v}\right) F_{\rm DM}^{2}(q) \right| \varphi_{q} \right\rangle \cdot \langle \varphi_{q} \left| f_{s}^{2} \right\rangle$$

- 1. Define **basis functions**, $|nlm\rangle = r_n(q) Y_{lm}(\hat{q})$, with spherical harmonics Y_{lm}
- 2. Projections of g_{χ} and f_s^2 onto each basis \longrightarrow **vectors**
- 3. Kinematic operator (incl. m_{χ}) \rightarrow matrix connecting (v, q) spaces
- 4. Detector rotations matrix multiplication

Outcome: can calculate **thousands** of $R(g_{\chi}, f_s^2, m_{\chi}, F_{DM})$ **per second**.

Difficult integrals $\langle g_{\chi} | \phi_{\nu} \rangle$ and $\langle \varphi_{q} | f_{s}^{2} \rangle$ only need to be done **once** (per model) *Easily saved and shared among researchers.*

Applications

- Which detector orientations maximize or minimize a **modulation signal?**
- Propagate astro/materials **uncertainties** through the rate calculation
- Infer **particle physics properties** (e.g. m_{χ}) from shape of the modulation signal
- Compare many different **target materials**
- Search for **substructures** in DM velocity distribution...

Looking To The Future: A Library of DM Systems

Difficult integrals $\langle g_{\chi} | \phi_{\nu} \rangle$ and $\langle \varphi_{q} | f_{s}^{2} \rangle$ only need to be done **once** (per model) Easily saved and shared among researchers.

BFN

UOREGON

7/7

Molecules for Nuclear Scattering

Detectable?

- **Yes**: if electrons get involved
 - 1. DM transfers \overrightarrow{q} to nucleus
 - 2. nuclear motion excites an electron
 - 3. electron emits photon to return to ground state
 - 4. Detect the photon

Simple example: strike a nucleus with enough energy to break or ionize the molecule.

 But: high energy processes like ionization are approximately isotropic.

For directionality, use **bound final states** → **Bonus**: lower energy threshold

How to calculate DM-molecule scattering:

see arXiv:2103.08601

LCAO: Linear Combinations of Atomic Orbitals

A Complication: trans-stilbene crystals form unit cell with 4 components

single molecule...

Crystal Form Factor

 4×10^{7}

6 × 107

 2×10^{7}

0

φ=80° ΔE=4.2eV

0.32

- 0.28

0.24

- 0.20

0.16

0.12

- 0.08

0.04

BEN LILLARD - UOREGON

Results: Diatomic Molecules CO and N_2 (2208.09002)

BEN LILLARD – UOREGON

