Scattering Amplitudes of Massive Spin-2 Kaluza-Klein States with Matter

Kirkimaan Mohan

DPF-Pheno 2024 University of Pittsburgh 16th May 2024

R. Sekhar Chivukula (UCSD), Xing Wang (UCSD), Dipan Sengupta (UNSW) and Elizabeth H. Simmons (UCSD), Joshua Gill (UA), Dennis Foren arXiv:1903.05650, 1910.06159, 2002.12458, 2104.08169, 2206.10628, 2207.02887, 2311.00770, 2312.08576

With

M. C. ELVAELCE

Can Dark Matter only have gravitational interactions?
Yes, but interactions are Planck scale suppressed.
Can Dark Matter only have gravitational interactions and and still behave like a WIMP?
Yes!

Simple Example with a brane scalar:

 $h^{\mu\nu}(T^{\rm SM}_{\mu\nu} + T^{\rm DM}_{\mu\nu})$

 $\mathcal{L}_{\bar{S},\text{brane}} = \int_{z_1}^{z_2} dz \,\sqrt{\bar{G}} \left(\frac{1}{2} \bar{G}^{MN} \partial_M \bar{S} \partial_N \bar{S} - \frac{1}{2} M_{\bar{S}}^2 \bar{S}^2\right) e^{-2A(z)} \delta(z - \bar{z}),$ Jz_1

Parle Content

o Tower of massive spin-2 states $h_{\mu\nu}$ @ Radion (r) @ Goldberger-Wise Scalar to stabilize extradimension @ SM +DM @ DM in Bulk or localized on TeV Brane @ DM : Scalar, Fermion or Vector SM +DM couple to $\frac{1}{\Lambda}h^{\mu\nu}(T^{(SM)}_{\mu\nu} + T^{(DM)}_{\mu\nu})$ • $\Lambda \simeq M_{pl} e^{-kr_c}$ (Usually a few TeV or more) $G_{MN} = e^{2A(z)} \begin{pmatrix} e^{-\kappa\hat{\varphi}/\sqrt{6}}(\eta_{\mu\nu} + \kappa\hat{h}_{\mu\nu}) & \frac{\kappa}{\sqrt{2}}\hat{A}_{\mu} \\ \frac{\kappa}{\sqrt{2}}\hat{A}_{\mu} & -\left(1 + \frac{\kappa}{\sqrt{6}}\hat{\varphi}\right)^2 \end{pmatrix}$

 $A(z) = -\ln(kz)$

 $h^{\mu\nu}(T^{\rm SM}_{\mu\nu}+T^{\rm DM}_{\mu\nu})$

arXiv: 1511.03278, 1709.09688, 1907.04340, 2004.14403

m_s [TeV]

4/14

 $\emptyset \Longrightarrow$ Unitarity is violated at a scale much smaller than Λ

Why the bad high energy growth? $\epsilon^0_{\mu\nu} o \frac{k_\mu k_\nu}{m^2}$ \sqrt{s} $\sim h^{(n)}_{\mu\nu}$ $\epsilon^0_{\mu\nu} \rightarrow \frac{k_\mu k_\nu}{m}$ 5/14

 $\emptyset \Longrightarrow$ Unitarity is violated at a scale much smaller than A

Why the bad high energy growth? $\epsilon^0_{\mu\nu} o \frac{k_\mu k_\nu}{m^2}$ \sqrt{s} $\sim h^{(n)}_{\mu\nu}$ $\epsilon^0_{\mu\nu} \rightarrow \frac{\kappa_\mu \kappa_\nu}{2}$ 5/14

@ Counting energy from polarization und vertices(*), we see the he energy of the amplitude should grow like $s^{3}(E^{6})$

is violated at a $\emptyset \Longrightarrow Unitar$ scale mu ... aller than Λ

why the bad high energy $\epsilon^0_{\mu\nu} o \frac{k_\mu k_\nu}{m^2}$ \sqrt{s} $\sim h_{\mu\nu}^{(n)}$ $\epsilon^0_{\mu\nu} \rightarrow \frac{\kappa_\mu \kappa_\nu}{r}$ 5/14

@ Counting energy from polarizativind vertices(*), we see the he energy of the amplitude should grow like $s^{3}(E^{6})$

is violated at a $\phi \Longrightarrow$ Unitar. scale mu . 2 valler than A

Diffeomorphism invariance protects amplitude from bad high energy growth! How?

 $h_{\mu\nu} \to h_{\mu\nu} + \partial_{(\mu}\xi_{\nu)}$

 $\emptyset \Longrightarrow Unitar$ scale mu

0

is violated at a saller than Λ -

Diffeomorphism invariance protects amplitude from bad high energy growth! How?

 $h_{\mu\nu} \to h_{\mu\nu} + \partial_{(\mu}\xi_{\nu)}$

Unitarity in Extra Dimensional Models

• Scalar Goldstone Modes $(\pi^{(n)})$

7

KK decomposition of 5D fields

$$egin{aligned} \hat{h}_{\mu
u}(x^lpha,z) &= &\sum_{n=0}^\infty \hat{h}_{\mu
u}^{(n)}(x^lpha) f^{(n)}(z), \ \hat{A}_\mu(x^lpha,z) &= &\sum_{n=1}^\infty \hat{A}_\mu^{(n)}(x^lpha) g^{(n)}(z), \ \hat{arphi}(x^lpha,z) &= & \hat{r}(x^lpha) k^{(0)}(z) + \sum_{n=1}^\infty \hat{\pi}^{(n)}(x) k^{(n)}(z) \end{aligned}$$

solutions of of 5D WF

 $f^{(n)}(z) = C_h^{(n)} z^2 \left[Y_1(m_n z_2) J_2(m_n z) - J_1(m_n z_2) Y_2(m_n z) \right]$ $g^{(n)}(z) = C_A^{(n)} z^2 \left[Y_1(m_n z_2) J_1(m_n z) - J_1(m_n z_2) Y_1(m_n z) \right]$ $k^{(n)}(z) = C_{\varphi}^{(n)} z^2 \left[Y_1(m_n z_2) J_0(m_n z) - J_1(m_n z_2) Y_0(m_n z) \right]$

Unicatic in Extra THE MARCHASE COMPANY

@ Let's look at $2 \rightarrow 2$ scattering of gravitons - worst

high energy behavior using simple power counting

Pre Liminaties

- @ Decompose the 5D graviton field into a lower of 4D fields
- @ Determine the fifth dimensional wave function for each mode from the sturm-Liouville problem
- @ Wave functions are orthogonal and complete
- @ Substitute wave functions into overlap integrals that set the couplings of the vertices

$$\hat{h}_{\mu
u}(x^{lpha},z) = \sum_{n=0}^{\infty} \hat{h}_{\mu
u}^{(n)}(x^{lpha}) f^{(n)}(z),$$

$$\begin{cases} \partial_z f^{(n)} = m_n g^{(n)} \\ (-\partial_z - 3A')g^{(n)} = m_n f^{(n)} \end{cases} \begin{cases} (\partial_z + A')g^{(n)} = m_n k^{(n)} \\ (-\partial_z - 2A')k^{(n)} = m_n g^{(n)} \end{cases}$$

$$\left\langle f^{(n)}f^{(m)}\right\rangle = \int_{z_1}^{z^2} dz e^{3A(z)}f^{(n)}(z)f^{(m)}(z) = \delta_{mn}$$

$$a_{klmn} = \left\langle f^{(k)} f^{(l)} f^{(m)} f^{(m)} \right\rangle = \int_{z_1}^{z_2} dz e^{3A(z)} f^{(k)}(z) f^{(l)}(z) f^{(m)}(z) f^{(m)}($$

$$\mathcal{M} = \frac{n^{3}}{n^{4}} + \sum_{S,T;U} \left[\frac{n^{3}}{n^{4}} + \frac{n^{3}}{n} + \frac{n^{3}}{n^{4}} + \frac{n^{3}}{n^{$$

More on this in 't-Hooft-Feynman Gauge in next talk from Xing Wang

$$\mathcal{M}(s, heta) = \sum_{\sigma \in \frac{1}{2}\mathbb{Z}} \overline{\mathcal{M}}^{(\sigma)}(heta) \cdot s^{\sigma}$$

 At each order of S, relations
 between overlap integrals ensure that the bad high energy growth vanishes

 \odot Example: $\sum a_{nnj}^2 = a_{nnnn}$

@ Possible to prove analytically using completeness and orthogonality

o Finally, as expected, we find that the amplitude grows as $\mathcal{O}(s) \implies$ Unitarity violated at $\sim \Lambda \simeq M_{pl} \ e^{-kr_c}$

arXiv: 2002.12458, 2206.10628

- Cancellations due to sum rules ensure the amplitudes grow only as E^2 ,

• i.e. $\tilde{M}^{(6)} = \tilde{M}^{(4)} = 0$ and $\tilde{M}^{(2)} \neq 0$

$$\begin{split} \tilde{\Phi} & \longrightarrow & h^{(n)} - h$$

Connection to Goldstone Boson Equivalence

BULLE SCALAT

- Now also consider the 5D
 Wavefunctions of Bulk Fields.
- Amplitudes appear to grow as E^6
- Superior Cancellations due to sum rules ensure the amplitudes grow only as E^2 ,

 \circ i.e. $\tilde{M}^{(6)} = \tilde{M}^{(4)} = 0$ and $\tilde{M}^{(2)} \neq 0$

$$\begin{split} \tilde{\Phi} & \qquad h^{(0)} & \qquad h^{(n)}_{h_{\alpha\beta}^{(n)}} \tilde{\Phi} & \qquad h^{(n$$

Connection to Goldstone Boson Equivalence

Proven Sum Rules and Cancellations Down to $E^{(2)}$

Also done for a stabilized RS model with Goldberger-Wise Scalaralr

arXiv: 2311,00770

- @ Naive power counting implies bad high energy growth for amplitudes involving massive gravilous
- o We have shown using sum rules how cancellations proceed so that eventually all amplitudes grow as O(s)
- What are the symmetries that are behind these
 And the second sum rules and cancellations? - See next talk by Xing Wang
- @ What next?
 - @ Now that we have all the correct amplitudes, work in progress on evaluation of the relic density in these models.

Amplitudes	Brane	Bull
Scalar	0(s)	0(s)
Vector	0(s)	0(s)
Fermion	0(s)	0(s)

