The LHC as a Neutrino-Ion Collider

Max Fieg w/

Juan M. Cruz-Martinez, Tommaso Giani, Peter Krack, Toni Makela, Tanjona Rabemananjara, and Juan Rojo

2309.09581 + EPJ

DPF-Pheno 2024

1/

Forward Physics

Historically, we've been interested in high p_T events

In the forward direction at the LHC there is an intense flux of particles

The forward direction has emerged as a highly important yet largely unseen area. Sensitive to:

- Plenty of BSM sensitivity
- Hadronic interaction modelling at energies relevant for neutrino telescopes (muon puzzle + prompt production)
- Highest energy neutrino beam produced in a lab

Forward Physics

Historically, we've been interested in high p_T events

In the forward direction at the LHC there is an intense flux of particles

The forward direction has emerged as a highly important yet largely unseen area. Sensitive to:

- Plenty of BSM sensitivity
- Hadronic interaction modelling at energies relevant for neutrino telescopes (muon puzzle + prompt production)
- Highest energy neutrino beam produced in a lab

First collider neutrinos recently discovered, brings a **new** way to observe high energy LHC collisions

- Proposed **Forward Physics Facility** will greatly improve our observation of LHC collisions
 - \approx 500k ν_e , 1M ν_μ , 10k ν_τ

Astro

"These <u>sources</u> are complicated... Unless you have many ways to *look* at them, you're not going to figure them out"

-Francis Halzen on Multimessenger Astronomy Scientific American

Collider

These <u>collisions</u> are complicated... Unless you have many ways to *look* at them, you're not going to figure them out

Multimessenger Collider Physics

Forward neutrinos can be used as a tool to better understand LHC collisions and answer fundamental questions in particle physics

Forward Neutrinos

- All flavors are copiously produced in the forward direction, dominantly from hadron decays, $E_{\nu} \approx TeV$
- By the end of Run 3, expect > 10^{12} neutrinos passing through FASER ν , and $\approx 10,000$ CC neutrino interactions (virtually all DIS)
- A proposed Forward Physics Facility (<u>FPF</u>) will house a suite of experiments, each with different strengths, that will operate during the HL-LHC
 - >100x the event rate!

• What can we do with all of these DIS events?

Forward Physics Facility orward hysics acility

FASER(v)2 - Decay volume + Tungsten Emulsion

FLArE – Liquid Argon Detector

AdvSND – Off axis neutrino detector

FORMOSA – millicharged particle detector

	D	etector	Number of CC Interactions			
Name	Mass	Coverage	Luminosity	$\nu_e + \bar{\nu}_e$	$ u_{\mu}\!+\!ar{ u}_{\mu}$	$\nu_{\tau} + \bar{\nu}_{\tau}$
$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	$150 {\rm ~fb^{-1}}$	901 / 3.4k	4.7k / 7.1k	15 / 97
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m ~fb^{-1}}$	137 / 395	790 / 1.0k	7.6 / 18.6
$FASER\nu 2$	20 tons	$\eta\gtrsim 8.5$	3 ab^{-1}	178k / 668k	943k / 1.4M	2.3k / 20k
FLArE	10 tons	$\eta\gtrsim7.5$	3 ab^{-1}	36k / 113k	203k / 268k	1.5k / 4k
AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	3 ab^{-1}	6.5k / 20k	41k / 53k	190 / 754

What can we learn from 1M DIS neutrino events?

Many things... ask me!

Here, I focus on using neutrinos to understand the quark content of proton

- 1. Answers a fundamental question of the proton
- 2. Parton Distribution Functions (PDFs) still have large uncertainties
 - Drives uncertainty for $\sigma(E_{\nu} = \text{TeV})$
 - Better understanding of proton structure \Longrightarrow Better understanding of LHC collisions

u_{μ} CC DIS

- v_{μ} flux dominant and the best understood
- With a magnet, CC allows us to identify v vs \overline{v} projectile
- Will study inclusive and semi-inclusive charm production at Run 3 and HL-LHC experiments

Detector						
Name	Mass	Coverage	Luminosity			
$FASER\nu$	$1 ext{ ton}$	$\eta\gtrsim 8.5$	$150 { m ~fb^{-1}}$			
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m ~fb^{-1}}$			
$FASER\nu 2$	20 tons	$\eta\gtrsim 8.5$	3 ab^{-1}			
FLArE	10 tons	$\eta\gtrsim7.5$	3 ab^{-1}			
AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	3 ab^{-1}			

DIS Event Rate

• In bins of (x, Q^2, E_v) can write the event rate as

Inclusive or Charm production can be written

PDFs - kinematic coverage

- TeV neutrino energy brings measurements at unprobed, small Bjorken-x and Q^2 momentum transfer regimes
- Complementary coverage as the proposed Electron-Ion Collider.
- Upon a boost, the forward neutrino program at the LHC can be viewed as a neutrino-ion collider ☺
- Let's look at the event rate in this plane

FPF experiments $-\nu_{\mu}$ event distribution at FASERv2 and FLArE

- Event rate in x, Q^2 plane
- O(1M) total event rate $\rightarrow \sim$ 500k after acceptance cuts

- We also estimate systematic uncertainties due to imperfect detector resolution
 - Fluctuate MC event sample about E_h , E_ℓ , θ_ℓ resolutions

Overview of PDF fits

We make lots of comparisons in the paper

- Different PDF Base sets
 - PDF4LHC21
 - NNPDF Consistent and robust results
 - EPPS21 Tungsten Nucleus
- FASERv2
 - Statistics vs systematics
 - Charm ID vs no charm ID
 - Charge ID vs no charge ID
- Experimental comparison
 - FASERv2 vs AdvSND, FLArE10
 - Total FPF data

I will highlight a few.

PDF fits – FASERv Run3 vs FASERv2 HL

- Run 3 statistics too small to be sensitive to PDF fit...
- Need FPF + HL-LHC measurements to make progress on PDF fits
- But data still useful! There are no measurements in this range, and measured FASER ν data may reveal inconsistencies with old data

Let's look at FASERv2 results

PDF fits – FASERv2 stat and systematics

- PDF base set includes existing neutrino DIS measurements
 - FPF still manages to improve!
- Huge improvement in strange quark
 - Consequence of charm tagging!
- Systematics weaken fits but do not erase them
- Gluon PDF unaffected → expected for a neutrino scattering experiment How do fits look without charm ID?

PDF fits – With and Without Charm ID

• Massive improvement in strange PDF, reduced to 1-5% for $x < \frac{1}{3}$

14

 ν_{μ}

d,s

μ

Phenomenology Implications

• What can we do with these improved PDF fits, what is the point?

- Look at quark-initiated processes of heavy bosons at LHC!
- Expect reduced uncertainties in heavy particle production!
 - Excellent complementarity between FPF and ATLAS/CMS

Phenomenology Implications

- Baseline vs systematics (FPF*) vs stat only (FPF)
- Forward measurements improve central predictions!
 - Including process relevant for m_W , and ${
 m sin}^2 heta_W$ measurements

Summary

- We calculate neutrino scattering rates at the FPF, with detection systematics folded in
 - Neutrinos are a <u>target</u> and a <u>tool</u> for FPF
- We explore the impact that DIS measurements at Run 3 and the FPF can improve PDF fits
 - Despite wealth of existing data, FPF still manages to improve PDF
 - Greatest gains in strange content due charm tagging
 - Charge ID has small improvement
- Fits from FPF help us understand LHC collisions and make better predictions at ATLAS
- Future work includes using gluon PDF at small-x to constrain prompt production

Thank you!

Backup

Faserv2 stat vs sys

Faserv2 charm vs no charm

Faserv2 charge vs no charge

Faserv2 vs AdvSND

Faserv2 vs flare

Fpf total

24

Tungsten

Pheno pdf4lhc21

PDF fits – FPF

