# Search for Dark Matter Produced in Association with a Resonant Bottom-Quark Pair

Erdem Yigit Ertorer Carnegie Mellon University

On behalf of the CMS Collaboration

Carnegie Mellon University



DPF-PHENO 2024 - May 13, 2024

### Standard Model (SM)



Higgs boson origin of mass

Η

Describes the fundamental forces that regulate the interaction between elementary particles





### **Dark Matter Searches**

- Indirect detection: look for the products of the <u>annihilation</u> of DM particles.
- **Direct detection**: look for the recoil produced when a DM particle <u>scatters</u> against a target.
- Collider approach: DM production by colliding SM particles at high energies



time











### **Dark Matter Searches**

- Indirect detection: look for the products of the <u>annihilation</u> of DM particles.
- Direct detection: look for the recoil produced when a DM particle <u>scatters</u> against a target.
- Collider approach: DM production by colliding SM particles at high energies

Feynman diagram



time



### **Dark Matter Searches**

- Indirect detection: look for the products of the <u>annihilation</u> of DM particles.
- **Direct detection**: look for the recoil produced when a DM particle <u>scatters</u> against a target.
- Collider approach: DM production by colliding SM particles at high energies



Feynman diagram

#### time







## Large Hadron Collider (LHC)



- Most powerful accelerator ever built
- Collides protons, accelerating them at ~speed of light
- 27 km in circumference







## **Compact Muon Solenoid (CMS)**



- Very large and complex detector

- It takes a collaboration of ~3000 physicists all around the world to built it and to operate it



### **Compact Muon Solenoid (CMS)**









### **Compact Muon Solenoid (CMS)**







# **Missing Transverse Momentum (p\_T^{miss})**

 $p_T^{tot,t0} = 0$ 

t0: before collision





# Missing Transverse Momentum (p<sub>T</sub><sup>miss</sup>)

 $\overrightarrow{p_T^{tot}} = \sum \overrightarrow{p_T} + \overrightarrow{p_T^{miss}}$ 

All visible particles

### after collision



### **Experimental Approach**



If produced together with a visible object, DM manifest itself as  $p_T^{miss}$ 







### Why at Colliders?

- If DM interacts, it does through a mediator
- At colliders, unique possibility to produce the mediator and measure its properties
  - $p_T^{miss}$  represents the mediator pT
    - Every  $p_T^{miss}$ -based DM search is essentially a search for the mediator





### **Theoretical Interpretation**





## **Presentation of Results (Example)**



### **LHC DM WG**, arxiv:1603.04156

**Recommendations on presenting LHC** searches for missing transverse energy signals using simplified *s*-channel models of dark matter





### **Our analysis**

- First search for dark Higgs boson decaying into a b-quark pair in CMS
- Using full Run-2 dataset (138 fb<sup>-1</sup>)
- Still ongoing
  - Pre-approved, going for approval

### Dark Higgs Model

- Dark Higgs  $(h_s)$  is the lightest state in the dark sector
  - Does not decay into DM
- Mixes with the SM Higgs
  - Unstable, decays into "bb"

=> Relic density set primarily by the  $DMDM - > h_{s}h_{s}$  annihilation channel

### https://arxiv.org/abs/1701.08780













 $\frac{1}{20}$ 





121









23











#### https://arxiv.org/abs/1701.08780







#### https://arxiv.org/abs/1701.08780











### **Event Selection**



#### PFMET > 250 GeV









/29

### AK15 jet









### **Event Selection**



AK15  $p_T$  > 160 GeV 40 GeV < AK15  $m_{SD}$  < 300 GeV DeepAK15 > WP (90% signal eff)

#### PFMET > 250 GeV

- $\Delta \phi$ (AK4 jets, PFMET) > 0.5
- Δφ(AK15 jets, PFMET) > 1.5
- τ/e/mu/photon veto
- Zero b-tagged AK4 jets outside leading AK15 cone



### Features of the Signal





### Signal Region Yields

|                                    | 2016                              | 2017                              | 2018                               |
|------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| $H \rightarrow b\bar{b}$           | $57.6 \pm 0.3$                    | $72.0 \pm 0.3$                    | $83.8\pm0.3$                       |
| $Z(\rightarrow \ell \ell)$ +jets   | $56.8\pm2.2$                      | $43.3\pm2.0$                      | $37.1\pm3.0$                       |
| QCD multijet                       | $93.3\pm25.8$                     | $154.9 \pm 41.7$                  | $163.2 \pm 64.6$                   |
| Diboson                            | $718.0 \pm 17.5$                  | $623.4 \pm 17.8$                  | $606.4 \pm 20.8$                   |
| Single t                           | $646.0 \pm 10.9$                  | $567.4 \pm 12.5$                  | $614.6 \pm 12.8$                   |
| tī                                 | $5486.5 \pm 199.7$                | $5810.7 \pm 60.0$                 | $6784.2 \pm 133.7$                 |
| W( $\rightarrow \ell \nu$ )+jets   | $3997.8 \pm 38.5$                 | 2991.0 ± 40.2                     | $2826.6 \pm 50.5$                  |
| $Z(\rightarrow \nu\nu)$ +jets      | $7514.8 \pm 29.2$                 | $7035.2 \pm 33.3$                 | $6978.5 \pm 38.8$                  |
| Total expected                     | $18570.7 \pm 208.1$               | $17297.9 \pm 92.4$                | $18094.2 \pm 163.4$                |
| $M_Z 1000 M_{h_c} 130 M_{dm} 150$  | $684.8 \pm 4.1$                   | $626.7 \pm 3.9$                   | $687.2 \pm 4.6$                    |
| $M_Z 1000 M_{h_s} 130 M_{dm} 500$  | $(381.6 \pm 2.1) 	imes 10^{-4}$   | $(357.6 \pm 2.0) \times 10^{-4}$  | $(399.6 \pm 2.4) \times 10^{-4}$   |
| $M_Z 1000 M_{h_s} 130 M_{dm} 1000$ | $(1341.2 \pm 6.7) \times 10^{-8}$ | $(1005.9 \pm 6.7) \times 10^{-8}$ | $(1341.2 \pm 10.1) \times 10^{-1}$ |
|                                    |                                   |                                   |                                    |



### **Expected Results**



 $\mu_{n\chi} = m_n m_{\rm DM} / (m_n + m_{\rm DM})$ 

MARINE MARINE MARINE 1/34

$$\sigma_{\mathrm{SI}} \simeq 6.9 \times 10^{-41} \mathrm{~cm}^2 \cdot \left(\frac{g_q g_{\mathrm{DM}}}{0.25}\right)^2 \left(\frac{1 \mathrm{~TeV}}{M_{\mathrm{med}}}\right)^4$$



### Summary

- Dark matter is an exciting topic
  - One of the most important open questions in modern physics
  - It is interdisciplinary by construction
- The LHC has a crucial role in the dark matter quest
  - And entire physics program has been built
  - Multiple searches testing different hypotheses in the same broad theoretical framework
    - With similar search strategies and experimental techniques
- Our analysis is the first search for dark Higgs boson decaying into a b-quark pair in CMS
  - Using full Run-2 dataset at 138 fb<sup>-1</sup>



## Thank you!



