% TRIUMF

Pure Glue Dark Sector Cosmology

Riku Mizuta (he/him) Working with D. McKeen, D. Morrissey, M. Shamma arXiv: 2405.xxxx (soon!) @Pheno 2024 on May 14, 2024

Discovery, accelerate

1

Motivation

What if dark matter comes from a new set of interactions and particle species? → <u>dark sector</u>

- E&M analogy: dark photons
 - Phenomenologically explored and searched

Pure Yang-Mills theory SU(N) with dark reheating

DS content:

$$\mathscr{L}_x = -rac{1}{4} \, X^a_{\mu
u} X^{a\,\mu
u}$$

- Consists of dark gluons, but no light flavours
- Dark gluons get confined to "glueballs" at some dark confinement scale
- Considered as viable DM candidates (Boddy+ '15, Soni & Chang '16, Yamanaka+ '14, Forestell+ '17 & '18,...)

Pure Yang-Mills theory SU(N) with dark reheating

DS content:

$$\mathscr{L}_x = -rac{1}{4} \, X^a_{\mu
u} X^{a\,\mu
u}$$

- Consists of dark gluons, but no light flavours
- Dark gluons get confined to "glueballs" at some dark confinement scale
- Considered as viable DM candidates (Boddy+ '15, Soni & Chang '16, Yamanaka+ '14, Forestell+ '17 & '18,...)

Dark reheating:

- We consider a scenario where DS is dominantly reheated after inflation
- Motivated from gravitational wave signals (Halverson+ '21, Huang+ '21, Kang & Chu '24, ...)

Dark glueball spectrum

We draw on Lattice QCD calculations:

Glueballs are classified by J^{PC}

 $/ m_0$

Mass ratio to 0^{++} , m_G

- The output is the mass ratio
 - *m*₀ as the free parameter
- SU(N > 3) has a similar mass spectrum!

States of interest: 0⁺⁺ and 1⁺⁻

PC

Evolution of DS alone

0⁺⁺ freezes-out first

- forms a massive bath $0^{++} + 0^{++} + 0^{++} \rightarrow 0^{++} + 0^{++}$
- 1⁺⁻ freezes-out next
- Abundance comparable to DM

 $1^{+-} + 1^{+-} \rightarrow 0^{++} + 0^{++}$

Other states stay in thermal equilibrium with 0⁺⁺

Abundance is negligible
 Ex: 2⁺⁺ + 0⁺⁺
 ⊂ 0⁺⁺ + 0⁺⁺

Connectors

To recover standard cosmology, we need to introduce connectors:

7

• We consider EFT operators with heavy mediator mass scale *M*:

$$-\mathscr{L}_{tr} = \frac{\kappa_6}{M^2} |H|^2 X^a_{\mu\nu} X^{a\mu\nu} + \frac{\kappa_8}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu} + \dots$$

Cosmological timelines

Cosmological timelines

$$-\mathscr{L}_{tr} = \frac{\kappa_6}{M^2} |H|^2 X^a_{\mu\nu} X^{a\mu\nu} + \frac{\kappa_8}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu} + \dots$$

10

D-6 operator

- Dark charge (C_x) -even
- Induces decays to most glueballs, including 0⁺⁺ bath
- Populates SM
- Cannot decay 1⁺⁻!
 - 1⁺⁻ : lightest C_x -odd

$$-\mathscr{L}_{tr} = \frac{\kappa_6}{M^2} |H|^2 X^a_{\mu\nu} X^{a\mu\nu} + \frac{\kappa_8}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu} + \dots$$

D-6 operator

- Dark charge (C_x) -even
- Induces decays to most glueballs, including 0⁺⁺ bath
- Populates SM
- Cannot decay 1⁺⁻!
 - 1⁺⁻ : lightest C_x -odd

D-8 operator

Leading C_x-odd term if C_x is broken 11

Induces decays to 1⁺⁻:

 $1^{\text{+-}} \rightarrow 0^{\text{++}} + Z/\gamma$

If C_x is conserved, 1⁺⁻ is stable!

0⁺⁺ decays and SM reheating

$$-\mathscr{L}_{tr} \supset \frac{\kappa_6}{M^2} |H|^2 X^a_{\mu\nu} X^{a\mu\nu}$$

- Decay time ~ M^4 / m_0^5
- We require that SM is sourced before BBN

0⁺⁺ decays and SM reheating

$$-\mathscr{L}_{tr} \supset \frac{\kappa_6}{M^2} |H|^2 X^a_{\mu\nu} X^{a\mu\nu}$$

- Decay time ~ M^4 / m_0^5
- We require that SM is sourced before BBN
- Decays can dilute the abundance of 1⁺⁻

1⁺⁻ decays in C_x-broken Universe

$$-\mathscr{L}_{tr} \supset \frac{\kappa_8}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu}$$

- Decay time ~ M^8 / m_0^9
- 1⁺⁻ is parametrically longerlived
 - Potential DM candidate!
- 1⁺⁻ has a monochromatic photon channel:

 $1^{+-} \rightarrow 0^{++} + \gamma$

Parameter space for 1⁺⁻ as DM

15

erat

đ

ac

2024-05-13

Cosmological abundance of 1⁺⁻

Small *M* (vertical line):

- 0⁺⁺ bath thermalized with SM
- 1⁺⁻ freezes-out (f.o.) in SM bath
 Medium *M*:
- 0⁺⁺ decays compete with 1⁺⁻ f.o.
- Large *M* (slope):
- 1⁺⁻ f.o. in 0⁺⁺ bath
- 0⁺⁺ decays dilute1⁺⁻ abundance

C_x -broken vs. C_x -conserved cosmology

CMB: Slatyer, '12 BBN: Kawasaki+, '18 γ-ray: Armand+, '21

17

Conclusions

1. Pure SU(N) dark sector

- a. Dark gluons confine to a spectrum of glueball states
- b. We start with the DS-dominated Universe
- c. Within DS, 1⁺⁻ freezes-out in 0⁺⁺ massive bath
- 2. Connectors to recover standard cosmology
 - a. Dominant 0⁺⁺ decay into SM and could dilute the abundance of 1⁺⁻
 - b. 1⁺⁻ is either stable or long-lived

3. 1⁺⁻ as DM

- a. C_x -broken: ruled out by CMB and BBN
- **b**. C_x -conserved: still large parameter space

∂TRIUMF

Thank you for listening!

@Triumflab rmizuta@triumf.ca

19

Backup slides

20

2024-05-13

Backup: glueball decays

Dim-8 operator

Juknevich '10

$$\begin{aligned} \mathscr{L}_{eff} \supset \frac{\alpha_x}{M^4} \left(\alpha_1 \chi_1 B_{\mu\nu} B_{\alpha\beta} + \alpha_2 \chi_2 W^c_{\mu\nu} W^c_{\alpha\beta} + \alpha_3 \chi_3 G^a_{\mu\nu} G^a_{\alpha\beta} \right) \\ \times \left(\frac{1}{60} S \, \eta^{\mu\nu} \eta^{\alpha\beta} + \frac{1}{45} P \, \epsilon^{\mu\nu\alpha\beta} + \ldots \right) \\ + \, \frac{\alpha_x^{3/2} \alpha_1^{1/2}}{M^4} \, \chi_Y \, B_{\mu\nu} \, \frac{14}{45} \left(\Omega^{(1)}_{\mu\nu} - \frac{5}{14} \Omega^{(2)}_{\mu\nu} \right) \, . \end{aligned}$$

$$\mathcal{O}^{(8a)} \sim \frac{1}{M^4} tr(F_{SM}F_{SM}) tr(XX) ,$$

$$\mathcal{O}^{(8b)} \sim \frac{1}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu} ,$$

$$\mathcal{O}^{(6)} \sim \frac{1}{M^2} H^{\dagger} H tr(XX) ,$$

$$\chi_i = \sum_r d(r_i) T_2(r_i) / \rho_r^4$$
$$\chi_Y = \sum_r d(r_i) Y_r / \rho_r^4 ,$$

Glueball decay summary

Juknevich '10

State	D = 6 operators	D = 8 operators
0++	bb, W^+W^-, ZZ, hh	$gg, WW, ZZ, Z\gamma, \gamma\gamma$
$2^{\pm +}$	$0^{\pm +}h(h^*)$	$gg, WW, ZZ, Z\gamma, \gamma\gamma$
0^{-+}	_	$gg, WW, ZZ, Z\gamma, \gamma\gamma$
3^{++}	$0^{-+}h, 2^{\pm +}h(h^*)$	$0^{-+}gg \ 2^{++}gg, \ 1^{+-}\gamma$
1+-	_	$0^{\pm +}\gamma, 2^{-+}\gamma$
1	$1^{+-}h(h^*)$	$0^{\pm +}\gamma, 2^{\pm +}\gamma, ff$
$0^{+-}, 2^{+-}, 3^{+-}$	$J^{P-}h(h^*)$	$0^{\pm +}\gamma, 2^{\pm +}\gamma$
$2^{}, 3^{}$		

Backup: confinement

Through dark confinement

Courtesy: David lattice #1: Nada and Panero 2018; #2: Borsanyi et al. 2012

Equation of state during transition

- Lattice studies match up well with glueball gas' EOS
- During the confinement, we can use a data fit for EOS

Courtesy: David lattice #1: Nada & Panero '18; #2: Borsanyi+ '12

Backup: initial conditions

Initial conditions; gluons & SM evolution

- y-axis: energy density ratio of SM to DS at confinement temperature
- Dashed lines: initial density ratio
- Left from dotted lines:
 - Both sectors are kept thermalized
 - independent of initial SM fraction
- Right from dotted lines:
 - DS and SM are decoupled
 - SM radiation is more diluted (a⁻⁴) than newly formed glueballs (a⁻³)

SM dilution during dark confinemnet

Dark gluon-SM Higgs interactions

Initial T_x at the end of inflation can lie in $[m_0, \infty]$

	$T_{x,i} \rightarrow \infty$	$T_{x,i} \rightarrow m_0$ (confinement)
<i>M</i> ↑ (rate ↓)	Thermalized \rightarrow decoupled	No time for thermalization
$M \downarrow \downarrow$ (rate $\uparrow \uparrow$)	Thermalized	Thermalized

Comparison of initial conditions

Thermalized:

Closer look to the nose

Backup: 1⁺⁻ evolution

Closer look

Red: 0⁺⁺ decays before freeze-out ³⁴ blue: 0⁺⁺ decays after freeze-out

Heating effects due to decays

Red: 0⁺⁺ decays before freeze-out ³⁵ blue: 0⁺⁺ decays after freeze-out

