Probing Heavy Asymmetric Dark Matter with the Glashow Resonance

Qinrui Liu **Queen's University**

with Ningqiang Song and Aaron Vincent 2405.XXXXX

DPF-Pheno 2024 May 14, 2024

Indirect Dark Matter Search

Qinrui Liu

DPF-PHENO 2024

Asymmetric Dark Matter (ADM)

- sector and the standard model.
- The decay products have an asymmetry of particle and antiparticle.

If ν and $\bar{\nu}$ can be identified experimentally, the asymmetry can be constrained

ADM usually carries B-L numbers and transfers an asymmetry between the dark

$$\mathcal{O}_X \mathcal{O}_{B-L}$$
 Λ^{d-4}

Asymmetric Dark Matter (ADM)

Glashow Resonance Resonance

 $\bar{\nu}_{\rho}$ can be disentangled with resonant interactions

$$(\bar{\nu}_e + e^- \to W^-$$

6.3 PeV 511 KeV 80.38 GeV

S. Glashow *Phys.Rev.* 118 (1960) 316-317

The only way to differentiate the $\bar{\nu}$ flux in the total flux at high energies.

First Detection of Glashow Resonance

PeV energy partially-contained event selection

- The detectable escaping muon suggests it's a hadronic shower.
- visible energy of 6.05 \pm 0.72 PeV

IceCube Nature 2021

Qinrui Liu

DPF-PHENO 2024

Neutrino Portal of ADM

Qinrui Liu

- We focus on portals where neutrinos are the main signal.
- For distinct signatures, we explore the lowest-dimension operators.
- Depending on the models, the lepton number can be either positive or negative.

$\bar{\nu}$ flux is not 0 even $\bar{\nu}$ is not produced initially

$$(\bar{\nu}\Phi)^2 \qquad \mathcal{O} \sim \frac{1}{\Lambda^2} X L \psi^2 \qquad \mathcal{O} \sim \frac{1}{\Lambda^2} X L L \nu^2$$

$$\bar{\nu}\bar{\nu} \qquad X \rightarrow \nu \psi \bar{\psi} / \bar{\nu} \psi \bar{\psi} \qquad X \rightarrow \nu \nu \bar{\nu} / \bar{\nu}$$

$\bar{\nu}_{\rho}$ Flux from ADM

τ_X : lifetime

 $dN_{\bar{\nu}_i}^{\rm ch}/dE_{\nu}$: neutrino production spectrum for a specific channel

 $P_{\bar{\nu}_i \rightarrow \bar{\nu}_e}$: neutrino oscillation

 $\mathcal{D} = -- \Delta \Omega J_{\Delta \Omega}$

Qinrui Liu

$$\sum_{X} \frac{3}{\alpha} \frac{dN_{\bar{\nu}_{\alpha}}^{ch}}{dE_{\nu}} P_{\bar{\nu}_{i} \to \bar{\nu}_{e}} \mathscr{D}(\Omega)$$

particle physics astrophysics

$\bar{\nu}_e$ Flux from ADM

τ_X : lifetime

 $dN_{\bar{\nu}_i}^{\rm ch}/dE_{\nu}$: neutrino production spectrum for a specific channel

 $P_{\bar{\nu}_i \rightarrow \bar{\nu}_e}$: neutrino oscillation

Qinrui Liu

$$\sum_{X} \frac{3}{\alpha} \frac{dN_{\bar{\nu}_{\alpha}}^{ch}}{dE_{\nu}} P_{\bar{\nu}_{i} \to \bar{\nu}_{e}} \mathscr{D}(\Omega)$$

particle physics astrophysics

$$\frac{1}{2}\sum_{\alpha}^{3} \int_{0}^{\infty} \frac{dN_{\bar{\nu}_{\alpha}}^{ch}}{dE_{\nu}'} \frac{dz}{H(z)} P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{e}}$$

Cosmology

The integral of Galactic DM distribution

$$\int_{\Delta\Omega} d\Omega \int_{1.0.5} \rho_{\chi} ds$$

FW profile

 Ω_{γ} : DM density

 $\rho_{\rm crit}$: critical density

 $E'_{\nu} = (1 + z)E_{\nu}$: redshifted energy

H: Hubble expansion

Electroweak Showering

- negative.
- The spectrum $dN_{\bar{\nu}}^{\rm ch}/dE_{\nu}$ becomes softer.

$\bar{\nu}$ can be produced no matter whether the lepton number is positive or

Constraints with Current Observation

respectively for $m_X \sim \text{PeV} - \text{EeV}$.

products increases as $\nu : \bar{\nu} \to 1 : 1$.

Qinrui Liu

Scenarios with positive/negative lepton numbers can be constrained

The sensitivity of Glashow Resonance weakens when the number of decay

Qinrui Liu

 (\mathbf{O}) IceCube-Gen2 (South Pole)

Next-Generation High-Energy Neutrino Telescopes

Glashow Resonance Signal

window.

Qinrui Liu

Glashow resonant events can be identified on an event-wise basis in the [4,10] PeV deposited energy

Event rates of Glashow resonance at IceCube as partially contained events

	$\chi\to\bar\nu\bar\nu$	 $\chi \to \bar{\nu}SS$
	$\chi \to \nu \nu$	 $\chi \to \nu SS$

Projected Sensitivities in the Future

- The sensitivity evolution with other experiments.

Qinrui Liu

Summary

- ADM models predict DM carrying B-L numbers, resulting in asymmetry of particle/antiparticle signals in indirect DM searches. Neutrino portals are the most invisible.
- The Glashow Resonance provides a way to differentiate neutrinos and antineutrinos in detection at high energies.
- IceCube observed the first candidate of such events, which can be used to constrain the lifetime of ADM.
- The sensitivities to the lifetime with the next-generation neutrino telescopes are estimated.

Bonus Slides

Event Morphologies

Charged Current ν_{μ}

$\nu_{\mu} + N \rightarrow \mu + X$

Track (data)

Angular resolution $0.2^{\circ} \sim 1^{\circ}$ Energy resolution ~ 2E

Qinrui Liu

Neutral Current ν / Charged Current ν_e

- $\nu_e + N \rightarrow e + X$
- $\nu_x + N \rightarrow \nu_x + N$
- **Cascade (data)**
- Angular resolution $5^{\circ} \sim 10^{\circ}$ Energy resolution $\sim 15 \% E$

Charged Current ν_{τ}

$\nu_{\tau} + N \rightarrow \tau + X$

"Double-Cascade" (simulation)

Astrophysical Processes

Hadronuclear

Differentiating ν and $\bar{\nu}$

pp pp µ damped $p\gamma \mu$ damped

 $\{1,1\}:\{2,2\}:\{0,0\}$ $\{1,0\}:\{1,1\}:\{0,0\}$ $\{0,0\}:\{1,1\}:\{0,0\}$ $\{0,0\}:\{1,0\}:\{0,0\}$

Qinrui Liu

 $p + p \rightarrow n_{\pi} \left[\pi^0 + \pi^+ + \pi^- \right]$ Photohadronic $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$

 $\pi^+ \to \nu_{\mu} + \mu^+ \to \nu_{\mu} + \left(e^+ + \nu_e + \bar{\nu}_{\mu}\right)$ $\pi^- \rightarrow (\bar{\nu}_{\mu}) + \mu^- \rightarrow (\bar{\nu}_{\mu}) + \left(e^- + (\bar{\nu}_e) + (\nu_{\mu}) \right)$

Uniform distribution of all charges

Dominating π^+

Asymmetry of pion charges can be seen in the ν vs $\bar{\nu}$ ratio

Spectrum Generation with Electroweak Corrections

$$\frac{dN_{\bar{\nu}_i}^{\text{ch}}}{dE_{\nu}}(E_{\nu}) = \sum_{j} \int_{E_{\nu}/m_{\chi}}^{1} \frac{1}{y_{\nu}}$$

Initial energy distribution of the decay product *i* with $E_i = ym_{\chi}$

Qinrui Liu

 $(\frac{-}{ym_{\gamma}};ym_{\chi})dy$ n_{γ}

Fragmentation function from i to $\bar{\nu}_e$, including electroweak showering and sequent evolution

Corrected Cross Section

subleading effects that affect the cross section

Atomic *e* motion: **Doppler Broadening**

Initial State Radiation

Qinrui Liu

