May 13-17, 2024

Anil Thapa

University of Virginia

Predictive Dirac neutrino spectrum with parity solution to the strong CP problem in $SU(5)_L \times SU(5)_R$

DPF-PHENO 24

[2312.14096](https://arxiv.org/abs/2312.14096) Anil Thapa (UVA)

In collaboration with K S Babu and R N Mohapatara *JHEP* 04 (2024) 049

Open questions Neutrino masses are predicted to be zero in SM, but neutrino oscillates! $\implies M_{\nu} \neq 0!$

 $>$ Octant of θ_{23} ?

> Absolute mass scale and mass hierarchy?

> Are neutrinos their own antiparticle? Dirac vs Majorana

 $>$ Is there CP Violation in lepton sector, $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$?

Nonzero neutrino masses \implies existence of new fundamental fields

> Why is neutrino mass so tiny?

Shortcomings of the Standard Model

t neutrino oscillates!
$$
\implies
$$

QCD lagrangian allows term that violates Parity P and Time Reversal T symmetries, thus CP \bullet symmetry:

$$
\mathcal{L}_{QCD} = -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} + \theta \frac{g_s^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} + \bar{q} \left(i\gamma^\mu D_\mu - m_q e^{i\theta_q\gamma_5} \right) q
$$

Any chiral rotation of the quark field, $q \rightarrow e^{i\alpha\gamma_5}q$ would lead to redefinition of the the new parameter \bullet $\theta \rightarrow \theta + \alpha$ due to anomalous nature of this rotation,

 g_s = strong coupling constant

$$
\implies \text{only invariant physical quantity is } \overline{\theta} = \theta + \theta_q
$$

or $\overline{\theta} = \theta + \text{ArgDet}[M_Q]$ with multiple flavors of t
No reason for them to cancel

- $\bar{\theta}$ induces neutron electric dipole moment (neutron EDM) $d_n \sim 3 \times 10^{-16} \bar{\theta}$ e cm \bullet
- Current bound on neutron is $d_n < 3 \times 10^{-26}$ e cm The mass parameters can in principle have arbitrary phases, and one would expect $\bar{\theta} \sim 6(1)$ Why is $\bar{\theta}$ so small?

$$
G_{\mu\nu}^a = \partial_{\mu} G_{\nu}^a - \partial_{\nu} G_{\mu}^a + g_{s} f^{abc}
$$

tiple flavors of the quark

them to cancel

<u>Strong CP Problem</u>

Shortcomings of the Standard Model

Solutions to the Strong CP Problem

Massless up quark $\bar{\theta} = \theta + \text{ArgDet}[M_{\Omega}]$ • chiral rotations, $u \rightarrow e^{i\alpha y}$ ^{*u*} $u \rightarrow \theta \rightarrow \theta + \alpha$ can remove it.

• $m_u = 0$ is inconsistent with experimental data as well as lattice calculations. A global chiral $U(1)$ symmetry is introduced that is spontaneously broken. Effective interaction of

Axion effective potential is such that vacuum solution relaxes to $\theta = 0$

The Axion

axion:

 Z

Make P or CP exact symmetry broken spontaneously such a way that the determinant of the quark mass matrix is real.

 $\bar{\theta} = 0$

$$
\left(\frac{a}{f_a}+\theta\right)\frac{1}{32\pi^2}G\tilde{G}
$$

R.D. Peccei and H.R. Quinn'77 F. Wilczek'78, S. Weinberg'78

P or CP

H. Georgi and I. Mc Arthur'81 K. Choi, C.W. Kim and W.K. Sze'88

Make $\bar{\theta}$ a dynamical filed.

A. Nelson'84 and S.M. Barr'84 Babu and Mohapatra, '90

Dirac Neutrinos from Left-Right Symmetry

Fermion representation:

Vector-like fermion introduced to realize "universal seesaw" for charged fermion masses \bullet

$$
Q_L(3,2,1,1/3) = \begin{pmatrix} u_L \\ d_L \end{pmatrix}
$$

\n
$$
Q_R(3,1,2,1/3) = \begin{pmatrix} u_R \\ d_R \end{pmatrix}
$$

\n
$$
Q_R(3,1,2,1/3) = \begin{pmatrix} u_R \\ d_R \end{pmatrix}
$$

\n
$$
Q_R(3,1,2,1/3) = \begin{pmatrix} u_R \\ d_R \end{pmatrix}
$$

\n
$$
Q_R(1,1,2,-1) = \begin{pmatrix} v_R \\ e_R \end{pmatrix}
$$

\n
$$
Q_R(2) \times SU(2)_R \times U(1)_Y
$$

\n
$$
SU(2)_L \times U(1)_Y
$$

\n
$$
U(1)_{\text{em}}
$$

\n
$$
H_L(1,2,1,1) = \begin{pmatrix} H_L^+ \\ H_L^0 \end{pmatrix}
$$

\n
$$
H_R(1,1,2,1) = \begin{pmatrix} H_R^+ \\ H_R^0 \end{pmatrix}_R
$$

\n
$$
H_R(1,1,2,1) = \begin{pmatrix} H_R^+ \\ H_R^0 \end{pmatrix}_R
$$

\n
$$
U(1)_{\text{em}}
$$

Higgs sec \bullet

$$
(3,2,1,1/3) = \binom{u_L}{d_L}
$$
\n
$$
Q_R (3,1,2,1/3) = \binom{u_R}{d_R}
$$
\n
$$
(1,2,1,-1) = \binom{v_L}{e_L}
$$
\n
$$
L_R (1,1,2,-1) = \binom{v_R}{e_R}
$$
\n
$$
L_R (1,1,2,-1) = \binom{v_R}{e_R}
$$
\n
$$
U(2)_L \times SU(2)_R \times U(1)_Y
$$
\n
$$
U(1)_Y
$$
\n
$$
U(1)_{em}
$$
\n
$$
H_L (1,2,1,1) = \binom{H_L^+}{H_L^0}
$$
\n
$$
H_R (1,1,2,1) = \binom{H_R^+}{H_R^0}
$$
\n
$$
U(1)_{em}
$$

$$
M_F = \begin{pmatrix} 0 & y \kappa_L \\ y^\dagger \kappa_R & M \end{pmatrix} \implies m_{u_i} \approx \frac{y^2 \kappa}{M}
$$

Seesaw for charged fermion masses (no seesaw for neutrinos)

Dirac neutrinos arise naturally at two loop

- The fermion spectrum of the model has a natural embedding in $SU(5)_L \times SU(5)_R$ \bullet unification
- \bullet
- The remaining vector-like quarks and leptons fill rest of the multiples

$$
\psi_{L,R} = \begin{bmatrix} D_1^c \\ D_2^c \\ D_2^c \\ D_3^c \\ \vdots \\ D_{L,R}^c \end{bmatrix} \chi_{L,l}
$$
\n
$$
L_{L,R} \underbrace{\sum_{i=1}^{L} D_{i,k}^c}_{\text{min}} \chi_{L,l}
$$

• Parity can be imposed under which $\psi_L \leftrightarrow \psi_R$ and $\chi_L \leftrightarrow \chi_R$

Embedding in $SU(5)_L \times SU(5)_R$

All left-handed (right-handed) fermions of the SM fit into $10 + 5$ of $SU(5)_L (SU(5)_R$) $10 + \bar{5}$ of $SU(5)$ _L $(SU(5)$ _R

GUT Symmetry Breaking and Gauge Coupling Unification

- couplings: $\frac{41}{26}$, $b_2 = -\frac{19}{6}$, $b_3 = -\frac{7}{2}$
- \implies An intermediate symmetry is needed \implies sin² $\theta_W = 3/16$ \implies Cannot reconcile value measured at EW scale

 $\frac{1}{2}\left\{\sum_{L}(75,1) + \sum_{R}(1,75)\right\}, \quad H_L(5,1) + H_R(1,5)\right\}, \quad \Phi(\overline{5},5), \quad \eta(\overline{15},15)$ $>$ allows $(24.1)H_R^{\dagger} \Phi H_L$ and $(24.1)\eta^{\dagger} \Phi \Phi$ that spoils strong CP solution Why not $(24,1)+(1,24)$? **Required for symmetry breaking**

Required for gauge coupling unification Why not $(10, 10)$?

- > allows rapid proton decay
- > spoils strong CP
- $>$ makes g_{5R} nonperturbative

[Babu, Mohapatra, **Thapa**, '24]

With the SM particles, we obtain following beta function coefficients with properly normalized gauge

If $SU(5) \times SU(5)$ directly break to the SM group, where g_i meet at a single value. $\alpha_{GUT} = 2 \alpha_3 = \alpha_2 =$ 13 3 *α*1 $\sin^2 \theta_W(m_t) =$ 3 16 $1 +$ $\frac{\alpha}{6\pi}$ { $\frac{185}{3}$ log $M_{\overline{G}}$ **Cannot reconcile value measured at EW scale** $\sin^2 \theta_W(m_t) = \frac{3}{16} \left[1 + \frac{3}{6\pi} \left\{ -\frac{165}{3} \log \frac{m_t}{m_t} \right\} \right]$

To break $SU(5)_L \times SU(5)_R$ spontaneously to $SU(3)_c \times U(1)_{em}$ we choose the following Higgs multiplets

$$
SU(5)_L \times SU(5)_R
$$

\n
$$
\downarrow M_G \sim \langle \Sigma_L \rangle
$$

\n
$$
SU(3)_{CL} \times SU(2)_L \times U(1)_L \times SU(5)_R
$$

\n
$$
\downarrow M_I \sim \langle \Phi \rangle, \langle H_R \rangle
$$

\n
$$
SU(3)_C \times SU(2)_L \times U(1)_Y
$$

\n
$$
\downarrow M_W \sim \langle H_L \rangle
$$

\n
$$
SU(3)_C \times U(1)_{em}
$$

• The evolution of the gauge couplings are governed by the following RGEs

 $\sin^2\theta_W$ at one-loop accuracy (ignoring threshold effect from VLF)

$$
16\pi^2 \frac{dg_i}{dt} = g_i^3 b_i + \frac{g_i^3}{16\pi^2} \left[\sum_j b_{ij} g_j^2 - \sum_k C_{ik} \text{Tr} \left(Y_k^{\dagger} Y_k \right) \right]
$$

$$
\left(Y_k^\dagger Y_k\right)
$$

$$
\sin^2 \theta_W(m_t) = \frac{3}{16} \left[1 + \frac{\alpha}{6\pi} \left\{ -\frac{185}{3} \log \frac{M_I}{m_t} + (46 + 39) \log \frac{M_G}{M_I} \right\} \right]
$$

(3, 2, -1/6, 15) \supset (15, 15)

GUT Symmetry Breaking and Gauge Coupling Unification

$$
SU(5)_L \times SU(5)_R
$$

\n
$$
\downarrow M_G \sim \langle \Sigma_L \rangle
$$

\n
$$
SU(3)_{CL} \times SU(2)_L \times U(1)_L \times SU(5)_R
$$

\n
$$
\downarrow M_I \sim \langle \Phi \rangle, \langle H_R \rangle
$$

\n
$$
SU(3)_C \times SU(2)_L \times U(1)_Y
$$

\n
$$
\downarrow M_W \sim \langle H_L \rangle
$$

\n
$$
SU(3)_C \times U(1)_{em}
$$

The evolution of the gauge couplings are governed by \bullet the following RGEs

 $\sin^2\theta_W$ at one-loop accuracy (ignoring threshold effect from VLF)

$$
16\pi^2 \frac{dg_i}{dt} = g_i^3 b_i + \frac{g_i^3}{16\pi^2} \left[\sum_j b_{ij} g_j^2 - \sum_k C_{ik} \text{Tr} \left(Y_k^{\dagger} Y_k \right) \right]
$$

$$
\sin^2 \theta_W(m_t) = \frac{3}{16} \left[1 + \frac{\alpha}{6\pi} \left\{ -\frac{185}{3} \log \frac{M_I}{m_t} + (46 + 39) \right\} \right]
$$
\n(3, 2, -1)

GUT Symmetry Breaking and Gauge Coupling Unification

Fermion Mass Generation

 $-\mathscr{L}_{\text{Yuk}} =$ $(Y_u^{\star})_{ij}$ 4 $\epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} \right\}$ $H^{\rho}_{L} + \chi^{\alpha\beta}_{Ri}\chi^{\gamma\delta}_{Rj}$

After spontaneous symmetry breaking, the masses of fermions read as \bullet

$$
M_u = \begin{pmatrix} 0 & Y_u \kappa_L \\ Y_u^\dagger \kappa_R & 0 \end{pmatrix}, \qquad M_\ell = \begin{pmatrix} 0 & Y_\ell \kappa_L \\ Y_\ell^\dagger \kappa_R & 0 \end{pmatrix}, \qquad M_d = \begin{pmatrix} 0 & Y_\ell^T \kappa_L \\ Y_\ell^\star \kappa_R & Y_D \nu_\phi \end{pmatrix}
$$

 $H^{\rho}_R\left\}\,+\sqrt{2}\,(Y^{\star}_{\ell})_{ij}\right\}\psi_{Li\alpha}\chi_{Lj}^{\alpha\beta}H^{\star}_{L\beta}+\psi_{Ri\alpha}\chi_{Rj}^{\alpha\beta}H^{\star}_{R\beta}\left\}\,+\,(Y^{\star}_{D})_{ij}\;\overline{\psi}^{\alpha}_{Li}\,\Phi^{\beta}_{\alpha}\psi_{Rj\beta}\right)$

Fermion Mass Generation

$$
-\mathcal{L}_{\text{Yuk}} = \frac{(Y^{\star}_{u})_{ij}}{4} \epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} H_{L}^{\rho} + \chi_{Ri}^{\alpha\beta} \chi_{Rj}^{\gamma\delta} H_{R}^{\rho} \right\} + \sqrt{\frac{2}{\pi}} \epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} H_{R}^{\rho} + \chi_{Rj}^{\alpha\beta} \chi_{Rj}^{\gamma\delta} H_{R}^{\rho} \right\} \right\}
$$

After spontaneous symmetry breaking, the masses of fermions read as \bullet

> Crucial for the model to be compatible with proton decay with $SU(5)_R$ intermediate symmetry.

 $\left\{ \Psi_{R}^{\rho}\right\} +\sqrt{2}\left(Y_{\ell}^{\star}\right)_{ij}\left\{ \psi_{L i\alpha}\chi_{L j}^{\alpha\beta}H_{L \beta}^{\star}+\psi_{R i\alpha}\chi_{R j}^{\alpha\beta}H_{R \beta}^{\star}\right\} +(Y_{D}^{\star})_{ij}\;\overline{\psi}_{L i}^{\alpha}\Phi_{\alpha}^{\beta}\psi_{R j\beta} \label{eq:4}$

$$
M_u = \begin{pmatrix} 0 & Y_u \kappa_L \\ Y_u^{\dagger} \kappa_R & 0 \\ \end{pmatrix}, \qquad M_{\ell} = \begin{pmatrix} 0 & Y_{\ell} \kappa_L \\ Y_{\ell}^{\dagger} \kappa_R & 0 \\ \end{pmatrix}, \qquad M_d = \begin{pmatrix} 0 & Y_{\ell}^T \kappa_L \\ Y_{\ell}^{\dagger} \kappa_R & Y_D V_{\phi} \end{pmatrix}
$$

Fermion Mass Generation

$$
-\mathcal{L}_{\text{Yuk}} = \frac{(Y^{\star}_{u})_{ij}}{4} \epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} H_{L}^{\rho} + \chi_{Ri}^{\alpha\beta} \chi_{Rj}^{\gamma\delta} H_{R}^{\rho} \right\} + \sqrt{\frac{2}{\pi}} \epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} H_{R}^{\rho} + \chi_{Rj}^{\alpha\beta} \chi_{Rj}^{\gamma\delta} H_{R}^{\rho} \right\} \right\}
$$

After spontaneous symmetry breaking, the masses of fermions read as \bullet

> Crucial for the model to be compatible with proton decay with $SU(5)_R$ intermediate symmetry.

Small Dirac neutrinos masses are induced naturally at the tree level via type-II Dirac seesaw \bullet

$$
M_u = \begin{pmatrix} 0 & Y_u \kappa_L \\ Y_u^\dagger \kappa_R & 0 \\ \end{pmatrix}, \qquad M_\ell = \begin{pmatrix} 0 & Y_\ell \kappa_L \\ Y_\ell^\dagger \kappa_R & 0 \\ \end{pmatrix}, \qquad M_d = \begin{pmatrix} 0 & Y_\ell^T \kappa_L \\ Y_\ell^\star \kappa_R & Y_D \nu_\phi \end{pmatrix}
$$

 $\left\{ \Psi_{R}^{\rho}\right\} +\sqrt{2}\left(Y_{\ell}^{\star}\right)_{ij}\left\{ \psi_{L i\alpha}\chi_{L j}^{\alpha\beta}H_{L \beta}^{\star}+\psi_{R i\alpha}\chi_{R j}^{\alpha\beta}H_{R \beta}^{\star}\right\} +(Y_{D}^{\star})_{ij}\;\overline{\psi}_{L i}^{\alpha}\Phi_{\alpha}^{\beta}\psi_{R j\beta} \label{eq:4}$

Preditions for Neutrino Oscillations

In the basis where Y_u and Y_e are diagonal, down-type quark \bullet mass matrix M_d read as

Only one parameter in M_d to fit three light down-quark masses

 \implies Predicts δ_{CP} and lightest neutrino mass m_{ν_1}

$$
M_{u} = \begin{pmatrix} 0 & \hat{M}_{u} \kappa_{L} \\ \hat{M}_{u} \frac{\kappa_{R}}{\kappa_{L}} & 0 \end{pmatrix}, \qquad M_{\ell} = \begin{pmatrix} 0 & \hat{M}_{\ell} \kappa_{L} \\ \hat{M}_{\ell} \frac{\kappa_{R}}{\kappa_{L}} & 0 \end{pmatrix},
$$

$$
M_{d} = \begin{pmatrix} 0 & \hat{M}_{\ell} \\ \hat{M}_{\ell} \frac{\kappa_{R}}{\kappa_{L}} & \frac{\nu_{\phi}}{\nu_{\nu}} U_{\text{PMNS}}^{*} \hat{M}_{\nu} U_{\text{PMNS}}^{T} \end{pmatrix}
$$

$$
\delta_{CP} = (130.4 \pm 1.2)° \text{ or } (229.6 \pm 1.2)
$$

$$
m_{\nu_1} = (4.8 - 8.4) \text{ meV}
$$

 \implies Only normal hierarchy

- Gauge bosons of $SU(5)_R$ with masses $M_{X_R,Y_R} \simeq M_I \sim 10^{11}$ GeV do not lead to proton decay owing to the structure of the zeros in (2,2) blocks of M_{ν} and M_{ℓ}
- These couplings involve at least one heavy field \bullet
- Same is true with $H_R(1,5)$ Higgs field which has mass of order M_I \bullet

Proton Decay

B-violating interactions of X_L and Y_L gauge bosons of $SU(5)_L$ with masses of order $M_G = (7 \times 10^{16} - 8 \times 10^{17})$ GeV mediate proton

The leading decay mode of proton is $p \to e^+ \pi^0$ with lifetime $\tau_p \approx (10^{38} - 10^{42})$ years. (Well beyond the reach of forthcoming experiments like JUNO, Hyperkamiokande, and DUNE)

Parity Solves the Strong CP Problem

$\bar{\theta} = \theta + \text{Arg Det} [M_Q]$ $G^a_{\mu\nu}\tilde{G}^{a\mu\nu} \propto \overrightarrow{E}_{\text{color}} \cdot \overrightarrow{B}_{\text{color}}$

quark mass matrix

 M_Q \propto parity breaking VEVs, need to make sure the determinant is real. $M_{\mathcal{Q}}$ $\boldsymbol{\propto}$

θ is odd under parity, therefore in parity symmetric theory it would vanish.

Parity Solves the Strong CP Problem

$$
\bar{\theta} = \theta + \text{Arg Det } [M_Q]
$$

$$
G_{\mu\nu}^a \tilde{G}^{a\mu\nu} \propto \vec{E}_{\text{color}} \cdot \vec{B}_{\text{color}}
$$

$$
\theta \text{ is odd under parity, therefore}
$$

• $SU(5)_L \times SU(5)_R$ with parity has the following quark mass matrices

 M_Q \propto parity breaking VEVs, need to make sure the determinant is real.

fore in parity symmetric theory it would vanish.

$$
\begin{array}{ccc}\n0 & Y_{\ell}^{T} \kappa_L \\
\star & Y_{D} \nu_{\phi}\n\end{array} \implies \begin{array}{c}\n\text{Det } [M_Q] = \text{Det } [M_u M_d] \equiv \text{Real} \\
\Rightarrow & \bar{\theta} = 0 \text{ at tree level}\n\end{array}
$$

All the Higgs potential parameters with the fields $[\{\Sigma_L(75,1) + \Sigma_R(1,75)\}, \{H_L(5,1) + H_R(1,5)\}, \Phi(5,5), \eta(15,15)]$

$$
M_u = \begin{pmatrix} 0 & Y_u \kappa_L \\ Y_u^{\dagger} \kappa_R & 0 \end{pmatrix} \qquad M_d = \begin{pmatrix} 0 & Y_{\ell}^T \kappa_L \\ Y_{\ell}^{\star} \kappa_R & Y_D \nu_{\phi} \end{pmatrix} \qquad \Longrightarrow \begin{array}{c} \text{Det } [M] \\ \Longrightarrow \bar{\theta} = 0 \end{array}
$$

are real with parity. Thus CP conserving vacuum is admitted, where all the VEVs are real.

ark mass matrix

Parity Solves the Strong CP Problem

$$
\bar{\theta} = \theta + \text{Arg Det } [M_Q]
$$

$$
G_{\mu\nu}^a \tilde{G}^{a\mu\nu} \propto \vec{E}_{\text{color}} \cdot \vec{B}_{\text{color}}
$$

$$
\theta \text{ is odd under parity, therefore}
$$

• $SU(5)_L \times SU(5)_R$ with parity has the following quark mass matrices

 M_Q \propto parity breaking VEVs, need to make sure the determinant is real.

Fore in parity symmetric theory it would vanish.

All the Higgs potential parameters with the fields $[\{\Sigma_L(75,1) + \Sigma_R(1,75)\}, \{H_L(5,1) + H_R(1,5)\}, \Phi(5,5), \eta(15,15)]$ are real with parity. Thus CP conserving vacuum is admitted, where all the VEVs are real.

• Quantum corrections would in general induce $\bar{\theta} \neq 0$, but this may be within experimentally allowed range $\bar{\theta} \leq 1.19 \times 10^{-10}$ arising from neutron EDM limits.

ark mass matrix

$$
\begin{array}{ccc}\n0 & Y_{\ell}^{T} \kappa_L \\
\star & Y_{D} \nu_{\phi}\n\end{array} \implies \begin{array}{c}\n\text{Det } [M_Q] = \text{Det } [M_u M_d] \equiv \text{Real} \\
\Rightarrow & \bar{\theta} = 0 \text{ at tree level}\n\end{array}
$$

$$
M_u = \begin{pmatrix} 0 & Y_u \kappa_L \\ Y_u^\dagger \kappa_R & 0 \end{pmatrix} \qquad M_d = \begin{pmatrix} 0 & Y_\ell^T \kappa_L \\ Y_\ell^\star \kappa_R & Y_D \nu_\phi \end{pmatrix} \qquad \Longrightarrow \begin{array}{c} \text{Det } [M] \\ \Longrightarrow \bar{\theta} = 0 \end{array}
$$

Vanishing of one loop $\bar{\theta}$ **contributions**

• Convenient to work in the flavor basis, where the mass matrices M_u and M_d are treated as part of the interaction Lagrangian.

 \implies need to sum all possible chirality flip in the propagator

$$
L, b \quad R, a \quad + \quad L, b \quad R, c \quad L, d \quad R, a \quad + \quad \dots = \quad \bar{f}_R \left(M_d^{\dagger} \frac{k^2}{k^2 - M_d M_d^{\dagger}} \right) f_L \qquad f_{L,R} = \begin{pmatrix} d \\ D \end{pmatrix}
$$

Vanishing of one loop θ contributions

• Convenient to work in the flavor basis, where the mass matrices M_u and M_d are treated as part of the interaction Lagrangian.

 \implies need to sum all possible chirality flip in the propagator

 $\delta M_q =$ *δM^q LL δM^q LH δM^q HL δM^q HH*)

$$
L, b \otimes R, a \qquad L, b \otimes R, c \otimes L, d \otimes R, a \qquad + \qquad \dots = \bar{f}_R \left(M_d^{\dagger} \frac{k^2}{k^2 - M_d M_d^{\dagger}} \right) f_L \qquad f_{L,R} = \begin{pmatrix} d \\ D \end{pmatrix}
$$

• Loop-corrected quark mass matrix

tree level quark mass for $q = u, d$ where Arg Det $[M_q^{(0)}] = 0$

$$
M_q = M_q^{(0)} + \delta
$$

u, *d*
$$
C = C_1 + C_2 + \dots
$$
 contribution
from 1-loop, 2-loop, ...

 $q^{(0)} + \delta M_q = M_q^{(0)}(1 + C)$

 : light sector *L* : heavy sector *H*

Vanishing of one loop θ contributions

• Convenient to work in the flavor basis, where the mass matrices M_u and M_d are treated as part of the interaction Lagrangian.

 \implies need to sum all possible chirality flip in the propagator

$$
L, b \otimes R, a \qquad L, b \otimes R, c \otimes L, d \otimes R, a \qquad + \qquad \dots = \bar{f}_R \left(M_d^{\dagger} \frac{k^2}{k^2 - M_d M_d^{\dagger}} \right) f_L \qquad f_{L,R} = \begin{pmatrix} d \\ D \end{pmatrix}
$$

• Loop-corrected quark mass matrix

tree level where Arg

$$
\delta M_q = \Bigg(
$$

$$
\begin{array}{c}\n\delta M_{LL}^q: \delta M_{LH}^q: \\
\delta M_{HL}^q: \delta M_{HH}^q\n\end{array}
$$

δM^q

1 quark mass for $q = u, d$	$C = C_1 + C_2 + \ldots$ contribution		
rg Det $[M_q^{(0)}] = 0$	from 1-loop, 2-loop, ...		
$M_q = M_q^{(0)} + \delta M_q = M_q^{(0)}(1 + C)$			
1	δM_{LH}^{q}	H_R^0, \cdots, H_L^0	
δM_{HH}^{q}	H_R^0, \cdots, H_L^0		
δM_{HH}^{q}	δM_{LH}^{q}		
δM_{HH}^{q}	δM_{LH}^{q}		
δM_{HH}^{q}	δM_{LH}^{q}		
δM_{HH}^{q}	δM_{LH}^{q}		
δM_{HH}^{q}	δM_{LH}^{q}		
δM_{HH}^{q}	δM_{LH}^{q}		
δM_{HH}^{q}	δM_{LH}^{q}	δM_{LH}^{q}	
δM_{HH}^{q}	δM_{LH}^{q}	δM_{LH}^{q}	
δM_{HH}^{q}	δM_{LH}^{q}	δM_{LH}^{q}	δM_{LH}^{q}

 : light sector *L* : heavy sector *H*

•
$$
\bar{\theta}
$$
 is given by

$$
\bar{\theta}
$$
 = Im TrC₁ + Im Tr(C₂ - $\frac{1}{2}$ C₁²) + ...

$$
\bar{\theta} = \text{Im Tr}\left[-\frac{v_{\phi}}{\kappa_{I}\kappa_{R}}\delta M_{LL}^{d}(Y_{d}^{\dagger})^{-1}Y_{D}Y_{d}^{-1} + \frac{1}{\kappa_{I}}\delta M_{LH}^{d}Y_{d}^{-1} + \frac{1}{\kappa_{R}}\delta M_{HL}^{d}(Y_{d}^{\dagger})^{-1}\right]
$$

matrix. Here *V ^µ* stands collectively for the gauge bosons (*G^µ*

 $\mathbb{F}_{\mathbb{F}_{q}}$ is diagrams leading to one-loop radiative corrections to the up-type quark mass \mathbb{F}_{q}

interval. Successive iterations can lead to finite shifts in the interval. The interval RGE from the interval
The interval RGE from the interval RGE from the interval RGE from the interval RGE from the interval RGE from Each diagram individually gives combined contributions to ✓ from *H^c* symmetric limit. $\bar{\theta} = 0$

A, Gµ, Zµ, Aµ, Z^µ ^A) which all

Vanishing of one loop *θ*¯

- Universal LRSM has natural embedding in $SU(5)_L \times SU(5)_R$
- Open questions in neutrino oscillations > Absolute mass scale and mass hierarchy? $m_{\nu_1} = (4.8 - 8.4)$ meV and Normal hierarchy > Are neutrinos their own antiparticle? ✓ Dirac neutrino via type-II seesaw > Is there CP Violation in lepton sector? Predicts $\delta_{CP} = (130.4 \pm 1.2)$ ° or (229.6 ± 1.2) ° > Why is neutrino mass so tiny? \checkmark Dirac mass suppressed by $\mathcal{O}(M_I/M_G) \approx 10^{-7}$
- The model solves strong CP problem without the need for an axion $\bar{\theta} = 0$ at tree level and one-loop level.
- No $0\nu\beta\beta$ and suppressed proton decay

Summary

- Universal LRSM has natural embedding in $SU(5)_L \times SU(5)_R$
- Open questions in neutrino oscillations > Absolute mass scale and mass hierarchy? $m_{\nu_1} = (4.8 - 8.4)$ meV and Normal hierarchy > Are neutrinos their own antiparticle? ✓ Dirac neutrino via type-II seesaw > Is there CP Violation in lepton sector? Predicts $\delta_{CP} = (130.4 \pm 1.2)$ ° or (229.6 ± 1.2) ° > Why is neutrino mass so tiny? \checkmark Dirac mass suppressed by $\mathcal{O}(M_I/M_G) \approx 10^{-7}$
- The model solves strong CP problem without the need for an axion $\bar{\theta} = 0$ at tree level and one-loop level.
- No $0\nu\beta\beta$ and suppressed proton decay

Summary

Thank you for your time

Two loop contribution to *θ*

Renormalization group evolution of *θ*

- There is the possibility that extrapolation of the Yukawa couplings by the RGE from the GUT scale to the weak scale could generate a nonzero $\bar{\theta}$
- The induced $\bar{\theta}$ via RGE from the up-quark sector read as

$$
\delta(\bar{\theta}) = \text{Im Tr}\left[\frac{d}{dt}\left(Y_{uL}Y_{uR}^{\dagger}\right)\left(Y_{uL}Y_{uL}^{\dagger}\right)^{-1}\right]
$$

$$
\beta^{(1)}(Y_{uL}) = +\frac{3}{2}Y_{uL}Y_{uL}^{\dagger}Y_{uL} - \frac{3}{2}Y_{dL}Y_{dL}^{\dagger}Y_{uL} + 3\operatorname{Tr}\left(Y_{uL}^{\dagger}Y_{uL}\right)Y_{uL} + 3\operatorname{Tr}\left(Y_{dL}^{\dagger}Y_{dL}\right)Y_{uL} + \operatorname{Tr}\left(Y_{L}^{\dagger}Y_{uL}\right)Y_{uL} - \frac{17}{20}g_{1L}^{2}Y_{uL} - \frac{9}{4}g_{2L}^{2}Y_{uL} - 8g_{3L}^{2}Y_{uL}
$$

• $\frac{d}{dt}\left(Y_{uL}Y_{uR}^{\dagger}\right)$ is a hermitian matrix \Longrightarrow does not generate θ if the initial θ is zero *d* $\frac{d}{dt}\left(Y_{uL}Y_{uR}^{\dagger}\right)$ is a hermitian matrix \Longrightarrow does not generate $\bar{\theta}$ if the initial $\bar{\theta}$

Fermion mass fitting

• Redefine the down-type quarks (d, D) and the charged leptons (e, E) to go from the original basis to new basis such that M_ℓ and M_u are diagonal ̂ ̂

 $d_L = V_R P^* d'_L$, $d_R = V_R P^* d'_R$, $D_L = Q U_{PMNS}^T D'_L$, $D_R = Q U_{PMNS}^T D'_R e_L = Q^* U_{PMNS}^{\dagger} e'_L$, $e_R = Q^* U_{PMNS}^{\dagger}$ e'_R , $v'_L = Q^* v'_L$, $v_R = Q^* v'_R E_L = V^* R E'_L$, $E_R = V^* R E'_R$.

$$
M_u = \begin{pmatrix} 0 & \hat{M}_u \kappa_L \\ \hat{M}_u \frac{\kappa_R}{\kappa_L} & 0 \end{pmatrix}, \qquad M_\ell = \begin{pmatrix} 0 & \hat{M}_\ell \kappa_L \\ \hat{M}_\ell \frac{\kappa_R}{\kappa_L} & 0 \end{pmatrix}, \qquad M_d = \begin{pmatrix} 0 & \hat{M}_\ell \\ \hat{M}_\ell \frac{\kappa_R}{\kappa_L} & \frac{\nu_\phi}{\nu_L} U_{\text{PMNS}}^* \hat{M}_\nu U_{\text{PMNS}}^T \end{pmatrix}
$$

$$
\xi_L^{\dagger} M_d \xi_R = \text{diag}. \left(m_d, m_s, m_b, m_{D_1}, m_{D_2}, m_{D_3} \right) \text{ where } \xi_{L,R} = \begin{pmatrix} \xi^{11} & \xi^{12} \\ \xi^{21} & \xi^{22} \end{pmatrix}_{L,R}
$$

matrix is given by $V_{\text{CKM}} = P'^* V_R P^* \xi_L^{11} Q'^*$

• CKM matrix is given by $V_{CKM} = P^{\prime*}V_R P^* \xi_L^{11}$

$$
m_{D_1}(M_I) = 1.05 \times 10^7 \text{ GeV} \qquad m_{D_2}(M_I) =
$$

unspecified unitary matrix V_R , thus V_{CKM} is unconstrained

 $= 1.62 \times 10^8$ GeV $m_{D_1} (M_I) = 4.38 \times 10^9$ GeV