Visible Quirk Signals at Colliders

Joshua Forsyth ¹ Matthew Low ² Chris Verhaaren ¹

¹Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA

²Pittsburgh Particle Physics Astrophysics and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, PA 15260, USA

Student Research Conference, 24 February 2024

Funding: National Science Foundation, Grant No. PHY-2210067

Introduction

2 What are quirks?

- SM Quarks vs BSM Quirks
- Neutral Naturalness and Quirks

Oe-excitation and Decay

4 Results

5 Conclusions and Future Work

-

э

2/13

LHC has made phenomenal achievements

- As a precision tool
 - Continues to push bounds, set limits.
 - Improved measurements of SM parameters.
 - HL-LHC will push further.¹
- As a discovery tool
 - Last fundamental discovery was Higgs
 - Higher energies can probe further, but...
 - Could we be missing something at accessible energies?

Quirks could exist at reachable energies.

¹https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

24 Feb 2024

Parton Pair Production

Bound partons described by potential

$$V(r) \approx \sigma r \sim \Lambda^2 r$$
. ($\Lambda = \text{confining scale}$) (2.1

Consider two states

with energies

$$E_1 \approx 2m_q + \Lambda^2 L$$
 and $E_2 \approx 4m_q + \Lambda^2 \left(L - \frac{1}{2m_q}\right)$. (2.2)

The difference in energies is

$$\Delta E = E_1 - E_2 = 2m_q \left(\frac{\Lambda^2}{4m_q^2} - 1\right) , \qquad (2.3)$$

so

 $\Lambda > 2m_q \implies \Delta E > 0 \implies$ fragmentation (hadronization).

< ∃⇒

590

4/13

э

SM Quark Dynamics

Producing light quarks lowers the energy of a bound state. Consequences are:

- No free quarks.
- Jets etc

Figure: Pair production from bound SM quark-antiquark pair.

Quirk Dynamics

No light quirks \implies suppressed pair production. Consequences are:

- produced particles remain bound
- Radiation sheds energy and angular momentum (ℓ) .
- Decays at $\ell = 0^{2}$.

Figure: Bound quirks oscillate and decay at low angular momentum.

²Kang and Luty, 0805.464

イロト イヨト イヨト

Possible explanations for hierarchy problem:

- Fine-tuning
- Higgs mass naturally corrected

Most natural solutions compensate effects of top quark.

- Include top "partner" to approx. cancel loops from top.
- LHC bounds on SM color top partners: $m_{t'} \gtrsim 1.3$ TeV.

This project considers quirks motivated by Neutral Naturalness framework ³.

• Neutral: top quark's partner particle is not charged under SM QCD.

Simplified Scalar Quirk Model

BYU

One generation of scalar quirks ("squirks") with SM electroweak charge and hidden gauge color charge.

- Difference of electric charge $q_{\tilde{u}} q_{\tilde{d}} = 1$.
- Agnostic to hidden gauge group. SU(3) used to compare with Folded-SUSY⁴.

Some other details:

- This project considers bound squirks ("squirkonium") states with net electric charge.
- Total bound state mass: $M\equiv m_u+m_d$, and
- Mass splitting between squirks: $\Delta \equiv m_u m_d$.

⁴ Burdman	et	al.,	0805.4667
----------------------	----	------	-----------

β -decay into neutral squirkonium.

Neutral squirkonium has many more visible signals:

• $\gamma\gamma$, ZZ, W^+W^- , etc.

De-excitation and Annihilation

Radiates gauge bosons: photons, Z bosons (slower), hidden glue.

- Could be produced along with hidden glue.
- Could lead to additional, displaced decays through hidden glue.

Two decay signals:

• $W\gamma$ and WZ

 β -decay time depends on mass splitting Δ .

• E.g. For $\Delta = 10$ GeV, $t_{\beta} \sim 10^{-17} \implies$ de-excitation and decay more probable for $m_0 = 30, 50$ GeV and for $M \lesssim 500$ GeV with $m_0 = 10$ GeV.

Figure: Analytical BR for charged squirkonium decay signals. Parameters: $M \equiv m_H + m_L$ and $\Delta \equiv m_H - m_L$.

24 Feb 2024

イロト イヨト イヨト

э

BYU

11/13

Experimental $W\gamma^{\mathbf{5}}$ and $WZ^{\mathbf{6}}$ resonance searches could lead to detection.

• Increased sensitivities or new strategies⁷ will help.

Forsyth, Low, Verhaaren (BYU, Pitt)

< □ ▶ < @ ▶ < E ▶ < E ▶ E 24 Feb 2024

24 Feb 2024

-

シへで
12/13

Summary:

- Quirks have masses significantly larger than their confinement scale, preventing jet signals.
- Quirks produced in bound state de-excite and decay quickly.
 - Hidden glueball mass impacts likelihood of β -decay vs. de-excitation.
 - $\Delta < 10$ GeV robustly de-excite and decay before β -decay.
 - Can have greater mass splitting for larger confinement scale
- Mass splitting has noticeable implications for possible detection.
 - Branching Ratios vary significantly with mass splitting.

Future work:

- Neutral squirkonium has more decay products available (and more searches to compare against)
- Displaced decays: quirkonium decays into hidden glueballs that later decay into visible signals
 - ► GlueShower ⁸ or an updated version ⁹ could help in modeling hidden glue showers.
- Follow same procedure for fermionic quirks

⁸Curtin et al., 2202.12899

⁹Batz et al., 2310.13731