Visible Quirk Signals at Colliders

Joshua Forsyth¹ Matthew Low² Chris Verhaaren¹

¹Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA

²Pittsburgh Particle Physics Astrophysics and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA

Student Research Conference, 24 February 2024

Funding: National Science Foundation, Grant No. PHY-2210067

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

 $2Q$

 $2Q$

1 [Introduction](#page-2-0)

2 [What are quirks?](#page-3-0)

- [SM Quarks vs BSM Quirks](#page-3-0)
- [Neutral Naturalness and Quirks](#page-5-0)

³ [De-excitation and Decay](#page-7-0)

⁴ [Results](#page-9-0)

⁵ [Conclusions and Future Work](#page-12-0)

 \mathbf{p} ∍

۵

- → → → ← ← → → ← ← →

LHC has made phenomenal achievements

- As a precision tool
	- ▶ Continues to push bounds, set limits.
	- ▶ Improved measurements of SM parameters.
	- \blacktriangleright HL-LHC will push further.¹
- As a discovery tool
	- ▶ Last fundamental discovery was Higgs
	- ▶ Higher energies can probe further, but...
	- Could we be missing something at accessible energies?

Quirks could exist at reachable energies.

1 <https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm>

Parton Pair Production

Bound partons described by potential

$$
V(r) \approx \sigma r \sim \Lambda^2 r \ . \qquad (\Lambda = \text{confirming scale}) \tag{2.1}
$$

Consider two states

with energies

$$
E_1 \approx 2m_q + \Lambda^2 L \qquad \text{and} \qquad E_2 \approx 4m_q + \Lambda^2 \left(L - \frac{1}{2m_q} \right) \ . \tag{2.2}
$$

The difference in energies is

$$
\Delta E = E_1 - E_2 = 2m_q \left(\frac{\Lambda^2}{4m_q^2} - 1\right) , \qquad (2.3)
$$

so

 $\Lambda > 2m_q \implies \Delta E > 0 \implies$ fragmentation (hadronization).

Ξ

 $\leftarrow \equiv$ \rightarrow

 $2Q$

э

4 ロ → 4 伊

 QQ

SM Quark Dynamics

Producing light quarks lowers the energy of a bound state. Consequences are:

- No free quarks.
- Jets etc

Figure: Pair production from bound SM quark-antiquark pair.

Quirk Dynamics

No light quirks \implies suppressed pair production. Consequences are: suppressed pair production.

Figure 13 Final pound

nergy and angular momentum (ℓ) .

Figure: Bound

- produced particles remain bound
- Radiation sheds energy and angular momentum (ℓ) .
- Decays at $\ell = 0^2$.

Figure: Bound quirks oscillate and decay at low angular momentum.

² Kang and Luty, [0805.464](https://arxiv.org/pdf/0805.464)

イロト イ押ト イヨト イヨト

 299

Possible explanations for hierarchy problem:

- Fine-tuning
- Higgs mass naturally corrected

Most natural solutions compensate effects of top quark.

- Include top "partner" to approx. cancel loops from top.
- LHC bounds on SM color top partners: $m_{t'} \gtrsim 1.3$ TeV.

This project considers quirks motivated by Neutral Naturalness framework ³.

• Neutral: top quark's partner particle is not charged under SM QCD.

Simplified Scalar Quirk Model

 QQ

One generation of scalar quirks ("squirks") with SM electroweak charge and hidden gauge color charge.

- Difference of electric charge $q_{\tilde{u}} q_{\tilde{d}} = 1$.
- \bullet Agnostic to hidden gauge group. $SU(3)$ used to compare with Folded-SUSY 4 .

Some other details:

- This project considers bound squirks ("squirkonium") states with net electric charge.
- Total bound state mass: $M \equiv m_u + m_d$, and
- Mass splitting between squirks: $\Delta \equiv m_u m_d$.

 299

 β -decay into neutral squirkonium. \blacksquare De-excitation and Annihilation

Neutral squirkonium has many more visible signals:

• $\gamma\gamma$, ZZ , W^+W^- , etc.

Radiates gauge bosons: photons, Z bosons (slower), hidden glue.

- Could be produced along with hidden glue.
- Could lead to additional, displaced decays through hidden glue.

Two decay signals:

• $W\gamma$ and WZ

 $β$ -decay time depends on mass splitting $Δ$.

• E.g. For $\Delta = 10$ GeV, $t_B \sim 10^{-17}$ \implies de-excitation and decay more probable for $m_0 = 30, 50$ GeV and for $M \leq 500$ GeV with $m_0 = 10$ GeV.

 \leftarrow m \rightarrow

Figure: Analytical BR for charged squirkonium decay signals. Parameters: $M \equiv m_H + m_L$ and $\Delta \equiv m_H - m_L$.

イロト イ部 トイモト イモト $2Q$ Έ

Experimental $W\gamma^5$ and WZ^6 resonance searches could lead to detection.

• Increased sensitivities or new strategies⁷ will help.

Forsyth, Low, Verhaaren (BYU, Pitt) **[Pheno/DPF 2024](#page-0-0)** 2024 24 Feb 2024 24 Feb 2024 11/13

 $2Q$

Þ

 \equiv \mathbb{R}^n

 \rightarrow \equiv \rightarrow

- ◆ ロ ▶ → 伊

 $2Q$

Summary:

- Quirks have masses significantly larger than their confinement scale, preventing jet signals.
- Quirks produced in bound state de-excite and decay quickly.
	- \blacktriangleright Hidden glueball mass impacts likelihood of β -decay vs. de-excitation.
	- \triangleright Δ < 10 GeV robustly de-excite and decay before β -decay.
	- \triangleright Can have greater mass splitting for larger confinement scale
- Mass splitting has noticeable implications for possible detection.
	- \blacktriangleright Branching Ratios vary significantly with mass splitting.

Future work:

- Neutral squirkonium has more decay products available (and more searches to compare against)
- Displaced decays: quirkonium decays into hidden glueballs that later decay into visible signals
	- ▶ GlueShower 8 or an updated version 9 could help in modeling hidden glue showers.
- Follow same procedure for fermionic quirks

⁸Curtin et al., [2202.12899](https://arxiv.org/pdf/2202.12899)

⁹Batz et al., [2310.13731](https://arxiv.org/pdf/2202.12899)