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Field mixing: not a new topic
• Particle mixing induced by their coupling to a common intermediate 

state or decay channel
• Of broad fundamental interest within the context of CP violation 

and/or baryogenesis
• Neutral Kaon mixing, B-meson mixing, D-meson mixing

• A formulation of meson mixing has been established for decades.

𝑖𝑖
d
d𝑡𝑡

𝐴𝐴1 𝑡𝑡
𝐴𝐴2 𝑡𝑡

= 𝐻𝐻eff
𝐴𝐴1 𝑡𝑡
𝐴𝐴2 𝑡𝑡

, 𝜓𝜓 = 𝐴𝐴1 𝑡𝑡 𝜅𝜅 + 𝐴𝐴2 𝑡𝑡 𝜅̅𝜅

• A single particle description for equal-mass particles mixing in vacuum.
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Field mixing: ubiquitous in the Universe
• Copious mesons produced in early universe after QCD phase transition.

• Need a multi-particle description for mixing in thermal background

• Particles of different constituents can share the same decay products.
• Axion-like particle v.s. Neutral-Pion

• Need a formulation accounting for mass difference

• Field mixing as a consequence of “portals” (mediator particles)
• Different sectors (either dark or not) linked by portals share common decay 

products

• Particle mixing in thermal background is ubiquitous outside HEP experiments
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General formulation – setup 
• Hamiltonian for two scalar field mixing in thermal medium.

𝐻𝐻 = 𝐻𝐻𝜙𝜙1 + 𝐻𝐻𝜙𝜙2 + 𝐻𝐻𝜒𝜒 + �𝑑𝑑3𝑥𝑥 𝜙𝜙1𝒪𝒪1 𝜒𝜒 + 𝜙𝜙2𝒪𝒪2 𝜒𝜒

• Coupling strength, denoted as 𝑔𝑔, are absorbed into 𝒪𝒪𝑎𝑎 𝜒𝜒
• 𝐻𝐻𝜙𝜙1 + 𝐻𝐻𝜙𝜙2 + 𝐻𝐻𝜒𝜒 are free-fields Hamiltonian, they define the trivial evolution in the 

interaction picture.

• 𝜙𝜙1 and 𝜙𝜙2 are effectively coupled after tracing out bath degrees of 
freedom 𝜒𝜒 field

• Similar effects but not the same mechanism as neutrino oscillations.
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General formulation – evolution

• To find equation of motion for the density matrix, begin with

�̇𝜌𝜌tot
int = −𝑖𝑖 𝐻𝐻I

int 𝑡𝑡 , �𝜌𝜌tot
int 𝑡𝑡

• Trace out 𝜒𝜒 fields in the thermal medium
• Expand to the leading order of perturbation
• Use Born approximation, �𝜌𝜌tot 𝑡𝑡 ≈ �𝜌𝜌 𝑡𝑡 ⊗ �𝜌𝜌𝜒𝜒 0

�̇𝜌𝜌 𝑡𝑡 = �
𝑎𝑎,𝑏𝑏=1,2

�d3𝑥𝑥 d3𝑥𝑥′ −
𝑖𝑖
2
�
0

𝑡𝑡
d𝑡𝑡′ 𝜙𝜙𝑎𝑎 𝑥𝑥 , 𝜙𝜙𝑏𝑏 𝑥𝑥′ , �𝜌𝜌 𝑡𝑡′ Σ𝑎𝑎𝑎𝑎 𝑥𝑥 − 𝑥𝑥′ − �

0

𝑡𝑡
d𝑡𝑡′ 𝜙𝜙𝑎𝑎 𝑥𝑥 , 𝜙𝜙𝑏𝑏 𝑥𝑥′ , �𝜌𝜌 𝑡𝑡′ 𝒩𝒩𝑎𝑎𝑎𝑎 𝑥𝑥 − 𝑥𝑥′

• Fluctuation and dissipation relation

𝑖𝑖Σ𝑎𝑎𝑎𝑎 𝒌𝒌,𝜔𝜔 coth
𝛽𝛽𝛽𝛽
2

= 2𝒩𝒩𝑎𝑎𝑎𝑎 𝒌𝒌,𝜔𝜔
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General formulation – evolution
• The expectation value 𝒪𝒪 ≔ Tr 𝒪𝒪 𝒙𝒙, 𝑡𝑡 �𝜌𝜌 𝑡𝑡  of a generic operator 𝒪𝒪 𝒙𝒙, 𝑡𝑡  in 

interaction picture evolves as
d
d𝑡𝑡

𝒪𝒪 = 𝒪̇𝒪 + Tr 𝒪𝒪 �̇𝜌𝜌

• Use the quantum master equation and cyclic symmetries of Trace.
d
d𝑡𝑡

𝒪𝒪 = 𝒪̇𝒪

+ �
𝑎𝑎,𝑏𝑏=1,2

�d3𝑦𝑦 d3𝑦𝑦′ −
𝑖𝑖
2
�
0

𝑡𝑡
d𝑡𝑡′Tr 𝒪𝒪 𝑥𝑥 ,𝜙𝜙𝑎𝑎 𝑦𝑦 ,𝜙𝜙𝑏𝑏 𝑦𝑦′ �𝜌𝜌 𝑡𝑡′ Σ𝑎𝑎𝑎𝑎 𝑦𝑦 − 𝑦𝑦′

+ �
𝑎𝑎,𝑏𝑏=1,2

∫ d3𝑦𝑦d3y′ −�
0

𝑡𝑡
d𝑡𝑡′Tr [𝒪𝒪 𝑥𝑥 ,𝜙𝜙𝑎𝑎 𝑦𝑦 ,𝜙𝜙𝑏𝑏 𝑦𝑦′ �𝜌𝜌 𝑡𝑡′ 𝒩𝒩𝑎𝑎𝑎𝑎 𝑦𝑦 − 𝑦𝑦′
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Amplitudes – equation of motion
• If one of the two mixed fields is initially coherent, amplitudes’ evolution is non-

trivial.
• E.g., axion-like particles participate in the field mixing

• Set 𝒪𝒪 = 𝜙𝜙𝑐𝑐 and 𝜋𝜋𝑐𝑐.
d2

d𝑡𝑡2
𝜙𝜙𝑐𝑐 − ∇2 𝜙𝜙𝑐𝑐 + 𝑚𝑚𝑐𝑐

2 𝜙𝜙𝑐𝑐 + �
𝑏𝑏=1,2

�d3𝑦𝑦′ �
0

𝑡𝑡
d𝑡𝑡′Σ𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑦𝑦′ 𝜙𝜙𝑐𝑐 𝑦𝑦′ = 0

d
d𝑡𝑡

𝜙𝜙𝑐𝑐 = 𝜋𝜋𝑐𝑐

• The term with noise-kernel vanishes, meaning amplitudes do not include 
contributions from fluctuations.
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Amplitudes -- Evolution
• It is more convenient to find solutions in momentum space and use Laplace transform for an 

initial-value problem.

• Define 𝝓𝝓 = 𝜙𝜙1 , 𝜙𝜙2 T and 𝝅𝝅 = 𝜋𝜋1 , 𝜋𝜋2 T

𝝓𝝓𝒌𝒌 = 𝐆̇𝐆𝒌𝒌 𝑡𝑡 ⋅ 𝝓𝝓𝒌𝒌 0 + 𝐆𝐆𝒌𝒌 𝑡𝑡 ⋅ 𝝅𝝅𝒌𝒌 0 , 𝐆𝐆𝒌𝒌 𝑡𝑡 = �
𝑖𝑖=1

4

𝐆𝐆𝑖𝑖𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡

• 𝐆𝐆 𝑡𝑡  is the Green’s function, 𝐆𝐆𝑖𝑖 are 2 × 2 matrices
• 𝑠𝑠𝑖𝑖 are four poles near ±𝑖𝑖𝜔𝜔1 and ±𝑖𝑖𝜔𝜔2 with negative real parts, yielding an exponential decay in the 

Green’s function.

• The size of mass difference is not specified in the setup.

• A strong mixing in the nearly-degenerate case
8

Δ𝑚𝑚2 ∼ 1,

𝐆𝐆𝑖𝑖 ∼
1 𝑔𝑔2

𝑔𝑔2 0
 or 0 𝑔𝑔2

𝑔𝑔2 1

Δ𝑚𝑚2 ∼ 𝑔𝑔2

𝐆𝐆𝑖𝑖 ∼
1 1
1 1



Hierarchy in coupling strength

• Nearly degenerate masses do NOT always indicate strong mixing if there 
is a hierarchy in coupling strength.

• Suppose 1 ≫ 𝑔𝑔1 ≫ 𝑔𝑔2. In all three degenerate cases
• Δ𝑚𝑚2 ∼ 𝑔𝑔12 or Δ𝑚𝑚2 ∼ 𝑔𝑔1𝑔𝑔2 or Δ𝑚𝑚2 ∼ 𝑔𝑔22

𝐆𝐆𝑖𝑖 ∼
1 ⁄𝑔𝑔2 𝑔𝑔2
⁄𝑔𝑔2 𝑔𝑔2 ⁄𝑔𝑔2 𝑔𝑔2 2  or ⁄𝑔𝑔2 𝑔𝑔2 2 ⁄𝑔𝑔2 𝑔𝑔2

⁄𝑔𝑔2 𝑔𝑔2 1

• Long-lived particles and short-lived particles never mix with each other 
strongly.

• Can not enhance the decay of a long-lived particle through mixing with a 
short-lived particle.
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Two-Point correlation functions --- variables

• Directly setting 𝒪𝒪 = 𝜙𝜙𝑎𝑎𝜙𝜙𝑏𝑏 or 𝜙𝜙𝑎𝑎𝜋𝜋𝑏𝑏 or 𝜋𝜋𝑎𝑎𝜋𝜋𝑏𝑏 causes some technique difficulties in 
solving the equation (cannot write their equations in a form of integro-differential 
equation with convolution as those of amplitudes.

• Disassemble 𝜙𝜙𝑐𝑐𝜙𝜙𝑑𝑑 , etc, find evolutions of �𝑎𝑎𝑐𝑐 �𝑎𝑎𝑑𝑑 and �𝑎𝑎𝑐𝑐
† �𝑎𝑎𝑑𝑑 instead.

• To reduce technique difficulties using symmetries, define

𝐴𝐴𝑐𝑐𝑐𝑐,𝒌𝒌 𝑡𝑡 ≔ 𝑎𝑎𝑐𝑐,𝒌𝒌
† 𝑡𝑡 ,𝑎𝑎𝑑𝑑,𝒌𝒌 , 𝐵𝐵𝑐𝑐𝑐𝑐,𝒌𝒌 ≔ 𝑎𝑎𝑐𝑐,𝒌𝒌,𝑎𝑎𝑑𝑑,−𝒌𝒌

• Such that

𝐴𝐴𝑐𝑐𝑐𝑐,𝒌𝒌
∗ = 𝐴𝐴𝑑𝑑𝑑𝑑,𝒌𝒌, 𝐵𝐵𝑐𝑐𝑐𝑐,𝒌𝒌 = 𝐵𝐵𝑑𝑑𝑑𝑑,−𝒌𝒌

• In the end, obtain four coupled matrix equations for 𝐴𝐴𝑐𝑐𝑐𝑐,𝒌𝒌,𝐴𝐴𝑐𝑐𝑐𝑐,−𝒌𝒌,𝐵𝐵𝑐𝑐𝑐𝑐,𝒌𝒌,𝐵𝐵𝑐𝑐𝑐𝑐,𝒌𝒌
∗ .
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Two-Point correlation functions– equations 
and solutions
• To organize equations, put all 𝐴𝐴𝑐𝑐𝑐𝑐,𝒌𝒌 and 𝐵𝐵𝑐𝑐𝑐𝑐,𝒌𝒌 in one column.

𝒟𝒟T = 𝐴𝐴𝒌𝒌,11, … ,𝐴𝐴−𝒌𝒌,11, … ,𝐵𝐵𝒌𝒌,11, … ,𝐵𝐵𝒌𝒌,11
∗ , …

• Rewrite equations as
d
d𝑡𝑡
𝒟𝒟 = 𝑖𝑖𝛀𝛀 ⋅ 𝒟𝒟 𝑡𝑡 − 𝑖𝑖 �

0

𝑡𝑡
d𝑡𝑡′𝐊𝐊 𝑡𝑡 − 𝑡𝑡′ ⋅ 𝒟𝒟 𝑡𝑡′ + ℐ⃗ 𝑡𝑡

• Formally,

𝒟𝒟 𝑡𝑡 = 𝐆𝐆𝒟𝒟 t ⋅ 𝒟𝒟 0 + �
0

𝑡𝑡
d𝑡𝑡′𝐆𝐆𝒟𝒟 𝑡𝑡 − 𝑡𝑡𝑡 ⋅ ℐ⃗ 𝑡𝑡′

• Up to the leading order perturbation, 𝐆𝐆𝒟𝒟 t  becomes block-diagonalized. Evolutions of 𝐴𝐴±𝒌𝒌 and 𝐵𝐵𝒌𝒌 
decouple, e.g.,

𝐴𝐴𝒌𝒌 𝑡𝑡 = 𝐆𝐆𝐴𝐴 t ⋅ 𝐴𝐴𝒌𝒌 0 + �
0

𝑡𝑡
d𝑡𝑡′𝐆𝐆𝐴𝐴 t − t′ ⋅ ℐ⃗𝐴𝐴 𝑡𝑡′

• Adiabatic expansion and leading order perturbation become consistent.
𝐴𝐴 ∼ 𝑒𝑒±𝑖𝑖 𝜔𝜔1−𝜔𝜔2 𝑡𝑡, 𝐵𝐵 ∼ 𝑒𝑒−2𝑖𝑖𝜔𝜔1𝑡𝑡 or 𝑒𝑒−𝑖𝑖 𝜔𝜔1+𝜔𝜔2 𝑡𝑡
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Structure in Green’s function
• Take 𝐴𝐴𝒌𝒌 an example to clarify results.
• Similar to amplitudes,

𝐆𝐆𝐴𝐴 t = �
𝑖𝑖=1

4

𝐆𝐆𝐴𝐴,𝑖𝑖 𝑒𝑒𝑠𝑠𝐴𝐴,𝑖𝑖𝑡𝑡

• Green’s functions of one- and two- point functions are related by a direct product.

�
𝐆𝐆𝐴𝐴,1 = 𝐆𝐆4 ⊗ 𝐆𝐆1
𝑠𝑠𝐴𝐴,1 = 𝑠𝑠4 + 𝑠𝑠1

, �
𝐆𝐆𝐴𝐴,2 = 𝐆𝐆2 ⊗ 𝐆𝐆3
𝑠𝑠𝐴𝐴,2 = 𝑠𝑠2 + 𝑠𝑠3

, �
𝐆𝐆𝐴𝐴,3 = 𝐆𝐆2 ⊗ 𝐆𝐆1
𝑠𝑠𝐴𝐴,3 = 𝑠𝑠2 + 𝑠𝑠1

, �
𝐆𝐆𝐴𝐴,4 = 𝐆𝐆4 ⊗ 𝐆𝐆3
𝑠𝑠𝐴𝐴,4 = 𝑠𝑠4 + 𝑠𝑠3

• 𝐆𝐆𝑖𝑖 and 𝑠𝑠𝑖𝑖 are Green’s function coefficients and poles of 𝑎𝑎𝑐𝑐,𝒌𝒌  and 𝑎𝑎𝑐𝑐,𝒌𝒌
†

• They are obtained after disassembling 𝜙𝜙𝑐𝑐 and 𝜋𝜋𝑐𝑐.
• All poles 𝑠𝑠𝐴𝐴,𝑖𝑖 takes the form 𝑠𝑠𝐴𝐴,𝑖𝑖 = 𝑖𝑖Ω𝐴𝐴,𝑖𝑖 − Γ𝐴𝐴,𝑖𝑖.
• In two of them Ω𝐴𝐴 = 0. The other two are near ±𝑖𝑖 𝜔𝜔1 − 𝜔𝜔2
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Secular contribution -- thermalization
• Unlike amplitudes, there are inhomogeneous terms in solutions of two-point correlations functions.

• They exhibits relaxing behaviors.

�
0

𝑡𝑡
d𝑡𝑡′𝐆𝐆𝐴𝐴 t − t′ ⋅ ℐ⃗𝐴𝐴 𝑡𝑡′ ∼ �

𝑖𝑖=1

4

𝐆𝐆𝐴𝐴,𝑖𝑖 ⋅
𝒩𝒩
−𝑠𝑠𝐴𝐴,1

𝑠𝑠𝐴𝐴,𝑖𝑖 ± 𝑖𝑖𝜔𝜔1,2 1 − 𝑒𝑒𝑖𝑖Ω𝐴𝐴,𝑖𝑖𝑡𝑡−Γ𝐴𝐴,𝑖𝑖𝑡𝑡

• 𝒩𝒩 are noise-kernels in the equations of motion.

• 𝜔𝜔1,2 means either 𝜔𝜔1 or 𝜔𝜔2

• For the two poles that are real (𝑖𝑖Ω𝐴𝐴,𝑖𝑖 = 0),
𝒩𝒩 𝑠𝑠𝐴𝐴,𝑖𝑖

−𝑠𝑠𝐴𝐴,1
∼ 1 + 2

1
𝑒𝑒𝛽𝛽𝜔𝜔1,2 − 1

• In the nearly-degenerate limit, 𝑠𝑠𝐴𝐴,𝑖𝑖 ∼ 𝑔𝑔2 for all poles. All poles will give contributions in this form.

• The Bose-Einstein distribution shows that 𝐴𝐴𝑐𝑐𝑐𝑐,𝒌𝒌 approaches to a thermal state.
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Secular contribution -- long time coherence

• 𝐴𝐴𝑐𝑐𝑐𝑐,𝒌𝒌 ≔ 𝑎𝑎𝑐𝑐,𝒌𝒌
† ,𝑎𝑎𝑑𝑑,𝒌𝒌  merits a description using Stokes parameters

𝑆̂𝑆0 = 𝑎𝑎1,𝒌𝒌
† 𝑎𝑎1,𝒌𝒌 + 𝑎𝑎2,𝒌𝒌

† 𝑎𝑎2,𝒌𝒌 =
𝐴𝐴11,𝒌𝒌 + 𝐴𝐴22,𝒌𝒌

2
− 1

𝑆̂𝑆1 = 𝑎𝑎1,𝒌𝒌
† 𝑎𝑎1,𝒌𝒌 − 𝑎𝑎2,𝒌𝒌

† 𝑎𝑎2,𝒌𝒌 =
𝐴𝐴11,𝒌𝒌 − 𝐴𝐴22,𝒌𝒌

2

𝑆̂𝑆3 = 𝑎𝑎1,𝒌𝒌
† 𝑎𝑎2,𝒌𝒌 + 𝑎𝑎2,𝒌𝒌

† 𝑎𝑎1,𝒌𝒌 =
𝐴𝐴12,𝒌𝒌 + 𝐴𝐴21,𝒌𝒌

2

𝑆̂𝑆4 = −𝑖𝑖 𝑎𝑎1,𝒌𝒌
† 𝑎𝑎2,𝒌𝒌 − 𝑎𝑎2,𝒌𝒌

† 𝑎𝑎1,𝒌𝒌 =
𝐴𝐴11,𝒌𝒌 − 𝐴𝐴22,𝒌𝒌

2𝑖𝑖

• In analogy to quantum optics, 𝑆̂𝑆3  and 𝑆̂𝑆4  describes the inter-field coherence.

• Secular terms from inhomogeneous terms implies a non-zero coherence in the long-time limit.
• In nearly-degenerate case, 𝐆𝐆𝐴𝐴,𝑖𝑖 inherit strong mixing from 𝐆𝐆𝑖𝑖 through the direct-product 

structure.
• A strong mixing implies a strong oscillation in number density and coherence when they approach to thermal 

state.
• It also implies coherence in the long-time limit is still of the order ∼ 1
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Thank You!
The work will be posted on arXiv soon.
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