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Field mixing: not a new topic

 Particle mixing induced by their coupling to a common intermediate
state or decay channel

» Of broad fundamental interest within the context of CP violation
and/or baryogenesis

* Neutral Kaon mixing, B-meson mixing, D-meson mixing

* A formulation of meson mixing has been established for decades.

d
G (0) = Ha(11D). W =mow+ a0

* A single particle description for equal-mass particles mixing in vacuum.




Field mixing: ubiquitous in the Universe

* Copious mesons produced in early universe after QCD phase transition.
* Need a multi-particle description for mixing in thermal background

 Particles of different constituents can share the same decay products.

* Axion-like particle v.s. Neutral-Pion

* Need a formulation accounting for mass difference

* Field mixing as a consequence of “portals” (mediator particles)

* Different sectors (either dark or not) linked by portals share common decay
products

* Particle mixing in thermal background is ubiquitous outside HEP experiments




General formulation - setup

 Hamiltonian for two scalar field mixing in thermal medium.

H=H, +Hy +H,+ fd3x{¢101 [x] + 20, [x1}

 Coupling strength, denoted as g, are absorbed into 0,[x]

* Hy + Hy, + H, are free-fields Hamiltonian, they define the trivial evolution in the
interaction picture.

* ¢, and ¢, are effectively coupled after tracing out bath degrees of
freedom y field

Gy — — ¢

e Similar effects but not the same mechanism as neutrino oscillations.



General formulation - evolution

* To find equation of motion for the density matrix, begin with

plo” = —i[H™®, 557 ®)]
* Trace out y fields in the thermal medium

* Expand to the leading order of perturbation
» Use Born approximation, po(t) = p(t) & p,(0)

.t
po= ) [dxaw {—% J de'E9aGO), 0, PN Ban =) = | P [cpb(x'),ﬁ(t')]]Nab(x—x')}

a,b=1,2

* Fluctuation and dissipation relation
w
12, (k, w) coth <'87> = 2N, (k, w)



General formulation - evolution

 The expectation value (O) := Tr{0(x, t)p(t)} of a generic operator O(x, t) in
interaction picture evolves as

—(0) (0) + Tr{0p}

* Use the quantum master equation and cyclic symmetries of Trace.
—<0> (0)
+ ) j d’y d* '{—— f de' Tr{{{0 (), $a )], 5 Y VA )} Ear (v — ¥ )}

a,b=1,2

+ z J a3yd3y { jdt Tr{|[[0(x), o (], $ "))} Ny (v — y)}

a,b=1,2



Amplitudes - equation of motion

e |If oneI of the two mixed fields is initially coherent, amplitudes’ evolution is non-
trivial.

e E.g., axion-like particles participate in the field mixing

* Set 0 = ¢, and m..

(42 t

ik V2(e) + mE(g) + bzlz | @y jo 4/ (X — ¥ )b () = O
d | —_

L a<¢c> — (T[(;>

* The term with noise-kernel vanishes, meaning amplitudes do not include
contributions from fluctuations.



Amplitudes — Evolution

It is more convenient to find solutions in momentum space and use Laplace transform for an
initial-value problem.

Define <¢> = (<¢1>1 <¢2>)T and (Tt> — (<7T1>, <7T2>)T \
(1) = Gi(1) - (D) (0) + G (8) - (m)(0),  Gpe(t) = Z G esit
=1

* G(t) is the Green’s function, G; are 2 X 2 matrices

 s; are four poles near +iw, and +iw, with negative real parts, yielding an exponential decay in the
Green’s function.

The size of mass difference is not specified in the setup.
Am? ~ 1, Am? ~ g*

1 g° 0 g* (11
(1 4)or (2 4) -} )

g

A strong mixing in the nearly-degenerate case



Hierarchy in coupling strength

* Nearly degenerate masses do NOT always indicate strong mixing if there
IS a hierarchy in coupling strength.

* Suppose 1 > g1 > g,. In all three degenerate cases
« Am? ~ g# or Am? ~ g,g, or Am? ~ g5

G-~< 1 92/ 92 ) or ((92/92)2 gz/Qz)
l 92/ 92 (92/92)2 92/ 92 1

* Long-lived particles and short-lived particles never mix with each other
strongly.

* Can not enhance the decay of a long-lived particle through mixing with a
short-lived particle.



Two-Point correlation functions — variables

Directly setting O = ¢, ¢, or ¢,m;, or m,m, causes some technique difficulties in
solving the equation (cannot write their equations in a form of integro-differential
equation with convolution as those of amplitudes.

Disassemble ¢.¢,, etc, find evolutions of a.a,; and dzdd instead.

To reduce technique difficulties using symmetries, define

Acar® = ({al@®,aan}),  Bear = ({ack aa i)

Such that

* — —
Acd,k — Adc,kJ Bcd,k — Bdc,—k

In the end, obtain four coupled matrix equations for A g x, Aca —k» Bea ks Bg‘d,k.
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Two-Point correlation functions- equations
and solutions

* To organize equations, put aII_{chd,k and B.q4  in one column.
*
D — (Ak,].l' ""A—k,lll ""Bk,].l' ""Bk,ll’ )

Rewrite equations as

d — g ‘ n 7
ED =iQ-D(t) - ij dt'K(t —t") - D(t") + I (¢t)
0

Formally, .
D(t) = Gp(t) - D(0) +f dt'Go (¢t — t') - I(t))
0

Up to the leading order perturbation, G4 (t) becomes block-diagonalized. Evolutions of A, and By,
decouple, e.g., B

t
Au(®) = G4(0) - 4, (0) + j 4t Gy (t = ') - T4 (6"
0

Adiabatic expansion and leading order perturbation become consistent.
A ~ eii(wl—wz)t’ B ~ e—2i(1)1t or e—i((l)1+(1)2)t
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Structure in Green’s function

* Take /Tk an example to clarify results.
e Similar to amplitudes,

4
Gy(t) = Z G,y ; esait
i=1

* Green’s functions of one- and two- point functions are related by a direct product.

GA,l = Gy 034 G, GA,Z = G, X G3 GA,3 = G, 03¢ G, GA,4 = Gy 03¢ G
Sa1 = S4 T 851 ’ Sa2 = Sy + 53 ’ Sa3 = Sy + 51 ’ Sa4a = S t 53

* G; and s; are Green'’s function coefficients and poles of {(a. ;) and <a;k>
* They are obtained after disassembling ¢, and 7.

* All poles s, ; takes the form s, ; = i)y ; —I,;.
* In two of them Q, = 0. The other two are near +i(w; — w,)
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Secular contribution — thermalization

Unlike amplitudes, there are inhomogeneous terms in solutions of two-point correlations functions.

They exhibits relaxing behaviors.
j dt'Gu(t—t") - 7,(t") ~ z Gy, - (SAL tiwg,) (1 — etPait-Tait)
—Sa1

* NV are noise-kernels in the equations of motion.

* wip, Means either w; or w,

For the two poles that are real (iQ,; = 0),

LGN (1 y2— >

_SA,l eﬁsz —1

* Inthe nearly-degenerate limit, s, ; ~ g? for all poles. All poles will give contributions in this form.

The Bose-Einstein distribution shows that A4  approaches to a thermal state.
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Secular contribution — long time coherence

* Acgi = <{a;r,k, ad,k}> merits a description using Stokes parameters
(50 = () + (e ge) = A Az
(51) = (af ara) - (0] ) = 22k Az
($3) = <aI,ka2,k> + <a;r,ka1,k> - Auzk ;AZl’k
_ All.k B Azz,k

(59 - 0o~ () - 225

- In analogy to quantum optics, (S3) and ($,) describes the inter-field coherence.

e Secular terms from inhomogeneous terms implies a non-zero coherence in the long-time limit.
* In nearly-degenerate case, G, ; inherit strong mixing from G; through the direct-product

structure.
* A strong mixing implies a strong oscillation in number density and coherence when they approach to thermal

state.
* It also implies coherence in the long-time limit is still of the order ~ 1



Thank You!

The work will be posted on arXiv soon.
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