<u>Hunting Inflaton at Colliders</u>

Digesh Raut

arXiv: 24xx.xxxx (In Preparation)

with A. Goshal (Warsaw U.) and N. Okada (Alabama U.)

draut@smcm.edu

DPF-PHENO 2024 | May 13-15

COSMIC INFLATION:

Cosmological Inflation

A near exponential expansion of early Universe

Triumphs of Inflation

- **O** Flatness of Universe
- **O** Uniformity of CMB Temperature
- O Origin "tiny Temperature fluctuations" in CMB

<u>Cosmology</u>

Inflationary Predictions depend on the shape of the Inflaton (scalar field) potential.

<u>Cosmology</u>

Inflationary Predictions depend on the shape of the Inflaton (scalar field) potential.

Particle Physics

The shape of the potential depends on the interactions of Inflaton (ϕ) with other particles.

Inflaton (ϕ) with Non-Minimal Gravitational Coupling (ξ)

$$\mathcal{S}_J = \int \mathrm{d}^4 x \,\sqrt{-g} \,\left[-\frac{1}{2} f(\phi) \mathcal{R} - \frac{1}{2} (\nabla \phi)^2 - V_J(\phi) \right]$$

$$f(\phi) = 1 + \xi \phi^2$$

$$V_J = \frac{1}{4}\lambda \phi^4$$

$$\mathcal{S}_J = \int \mathrm{d}^4 x \,\sqrt{-g} \,\left[-\frac{1}{2} f(\phi) \mathcal{R} - \frac{1}{2} (\nabla \phi)^2 - V_J(\phi) \right]$$

$$f(\phi) = 1 + \xi \phi^2$$

$$V_J = \frac{1}{4}\lambda \phi^4$$

Model: Non-Minimal U(1)_X Higgs Inflation + Conformal Symmetry

$U(1)_X$ **Extended SM**

Standard Model (SM)

	1				
	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_X$	\Leftrightarrow New Bo
$ig q_L^i$	3	2	1/6	$(1/6)x_H + (1/3)$	(Z' – Bo
$\left u_{R}^{i} \right $	3	1	2/3	$(2/3)x_H + (1/3)$	
d_R^i	3	1	-1/3	$(-1/3)x_H + (1/3)$	
ℓ_L^i	1	2	-1/2	$(-1/2)x_H - 1$	
e_R^i	1	1	-1	$-x_{H} - 1$	
H	1	2	-1/2	$(-1/2)x_{H}$	
N_R^i	1	1	0	-1	\Leftrightarrow New Fe
Φ	1	1	0	2	\Leftrightarrow New H

oson)

$Q_X = Q_{B-L} + x_H Q_Y$

• (B - L) Limit : $x_H \rightarrow 0$

ermions

liggs

Inflaton

$U(1)_{X}$ **Extended SM**

Standard Model (SM)

					N
	$ SU(3)_c $	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_X$	⇔ New Boson
q_L^i	3	2	1/6	$(1/6)x_H + (1/3)$	(Z' – Bosor
$\left u_{R}^{i} ight $	3	1	2/3	$(2/3)x_H + (1/3)$	
d_R^i	3	1	-1/3	$(-1/3)x_H + (1/3)$	
ℓ_L^i	1	2	-1/2	$(-1/2)x_H - 1$	
e_R^i	1	1	-1	$-x_H - 1$	
H	1	2	-1/2	$(-1/2)x_{H}$	
N_R^i	1	1	0	-1	\Leftrightarrow New Ferm
Φ	1	1	0	2	\Leftrightarrow New Higg
					Inflaton

Classical Conformal Invariance:

oson oson)

$$V = \lambda_H (H^{\dagger} H)^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 - \lambda_{\min} (H^{\dagger} H) (\Phi^{\dagger} \Phi)$$

- ^O The $U(1)_X$ symmetry is broken by Coleman Weinberg Mechanism.
- $OU(1)_X$ breaking triggers electroweak symmetry breaking through H and Φ mixing

ermions

$$m_{higgs}^2 = \lambda_{mix} v_X^2$$

liggs

<u>Cosmology</u>

PLANCK

 (r, n_s)

 $(\lambda \leftrightarrow \xi)$

Elementary Particle Physics

LHC Z' Search

 $(m_{Z'}, g_X, x_H)$

Production and Detection of Inflaton

Collider Inflaton Search

 (m_{ϕ}, θ)

Inflaton Production at Collider through Higgs Mixing

$V \supset \lambda_{\min} (H^{\dagger} H) (\Phi^{\dagger} \Phi)$

FASER's Physics Reach for Long-Lived Particles Phys. Rev. D 99, 095011 (2019)

$V \supset \lambda_{\min} (H^{\dagger} H) (\Phi^{\dagger} \Phi)$

Non-Minimal $U(1)_X$ **Higgs Inflation** +**Conformal Symmetry** <u>Inflaton Mass</u>: $m_{\phi}^2 = \frac{3}{2\pi^2} g_x^2 m_{Z'}^2 \left(1 - 2\frac{m_N^4}{m_{Z'}^4}\right)$ **Benchmark** $\theta \sim \frac{v_h}{-}$ Mixing Angle : $\left(m_N = \frac{m_{Z'}}{2}\right)$ v_X

Nobuchika Okada, **DR**, arXiv: 1910.09663

Results for fixed $x_H = 10$

Search Reach: 0 FASER

Exclusion: 0 Z' Search LHC (ATLAS)

Exclusion: 0 Planck (2018) bound on r Φ $1. \times 10^{-4}$ $5. \times 10^{-5}$

> $1. \times 10^{-5}$ 5.×10⁻⁶

Nobuchika Okada, **DR**, arXiv: 1910.09663 The Forward Physics Facility at the High-Luminosity LHC, arXiv 2203.05090

igesh Raut

Inflaton Decay and Reheating

$$T_R \simeq \left(\frac{90}{\pi^2 g_*}\right)^{1/4} \sqrt{\Gamma_c}$$

2.6 5.0 10

Non-Minimal U(1)_X Higgs Inflation + Conformal Symmetry

Digesh Raut

<u>Hunting Inflaton</u> <u>at Colliders</u>

ANY Long?

draut@smcm.edu

 $V = \frac{1}{\Delta} \lambda_{\Phi}(\phi) \phi^4$ $\frac{d\lambda_{\Phi}}{d\ln\phi} = \beta_{\lambda} \simeq 96\alpha_X^2 - 3\alpha_Y^2,$ $\frac{d\alpha_X}{d\ln\phi} = \beta_g = \frac{72 + 64x_H + 41x_H^2}{12\pi}\alpha_X^2,$ $\frac{d\alpha_Y}{d\ln\phi} = \beta_Y = \frac{1}{2\pi}\alpha_Y \left(\frac{5}{2}\alpha_Y - 6\alpha_X\right).$

Backup Slides

