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Structure of talk

1 Problem at hand

▶ And current alternatives

2 Setting up the problem

3 Quantum algorithms in question (VQAs)

4 Current results
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The problem

2 → 2 → n collision. From Kim et al. 2021

[2111.07806]

• Binary classification: did particle

νi come from A or B?
• A QUBO

1
problem: Quadratic

Unconstrained Binary

Optimization problem:

For an n-bit string x , find x∗ such that it

minimizes

fw(x) =
n∑

i,j=1

wijxixj

1

A rare occurance of a ‘Q’ not standing for ‘quantum’
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Specific case: pp → t t̄

Two dominant decay modes for t :
• Leptonic: t → W+b → ℓνℓb

▶ Cleaner – only one jet

▶ But there’s missing momentum

• Hadronic: t → W+b → qq̄b
▶ No missing momentum

▶ But messier – 3 quarks creating 3 jets

Our focus has been on the latter case:

pp → t t̄ → qq̄q′q̄′bb̄ (i.e. 6 jets)
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Alternate methods

• Kinematic methods like the hemisphere method [1]

▶ Make assertions and assumptions of the kinematics of the

system

• Machine learning

▶ Great at finding and learning patterns

▶ Lot of research that can be applied in HEP, e.g. SPANET

(2106.03898, 2012.03542)

▶ Classical, so still limited by exponential growth of complexity

• Quantum annealing (2111.07806)

▶ Can find the global minimum

▶ Smaller energy gaps between eigenvalues requires larger

relaxation times

▶ Limited with degenerate eigenvalues
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Variational Quantum Algorithms

If you know neural networks keep that in mind

• We have some operator C whose expectation value, ⟨θ|C|θ⟩
we want to extremize

▶ The state |θ⟩ is parameterized by parameters

θ = (θ1, θ2, . . . , θn)
▶ e.g. for this talk, think C is a Hamiltonian and we wish to find

the ground state energy

• |θ⟩ can be created with a quantum circuit: U(θ) |0⟩ = |θ⟩
• Use a classical optimizer to update the parameters θn → θn+1

and repeat

▶ They are hybrid algorithms |0⟩

U(θ)
|0⟩ |θ⟩
.
.
.

|0⟩


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Setup

• With QAOA on our mind, is there a Hamiltonian that we can

use?

H = (p2A − p2B)
2

where

{
pA =

∑
xipi

pB =
∑

(1− xi)pi

and xi = 1 if particle i is associated with A, otherwise 0

• Change from indicator variables to spin: xi = (1+ si)/2,

H =
∑
ij

Jijsisj where Jij =
∑
kℓ

(pi · pk) (pj · pℓ)

• Since si = ±1, we can write our Hamiltonian operator as

HP =
∑
ij

Jijσizσ
j
z .

Eigenvalues are ±1 and eigenvectors are computation basis

vectors
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Algorithms [Quantum Approximation Optimization Algorithm]

• QAOA: Discretize the adiabatic evolution fromMixer
Hamiltonian HM with known ground state/energy to

Problem Hamiltonian HP whose ground state solve our

problem.

HM → HP =⇒ |+⟩ → |000111⟩

Each layer of the circuit represents a small time step∆t and
has 2 free parameters.

• ma-QAOA: What if each qubit has it’s own free parameter?

• XQAOA: What if there is also another Mixer Hamiltonian,

HX ?

• FALQON: Purely quantum. What if we iteratively build the

circuit where the next free parameter depends on an

expectation value of the current circuit?

(unmentioned: ADAPT-QAOA, WSQAOA)

Source: Farhi et al. 2014 [1411.4028]
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Algorithms [multiangle-QAOA]

• QAOA: Discretize the adiabatic evolution fromMixer
Hamiltonian HM with known ground state/energy to

Problem Hamiltonian HP whose ground state solve our

problem.

HM → HP =⇒ |+⟩ → |000111⟩

Each layer of the circuit represents a small time step∆t and
has 2 free parameters.

• ma-QAOA: What if each qubit has it’s own free parameter?

• XQAOA: What if there is also another Mixer Hamiltonian,

HX ?

• FALQON: Purely quantum. What if we iteratively build the

circuit where the next free parameter depends on an

expectation value of the current circuit?

(unmentioned: ADAPT-QAOA, WSQAOA)

Source: Herrman et al. 2021 [2109.11455]
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Algorithms [eXpressive QAOA]

• QAOA: Discretize the adiabatic evolution fromMixer
Hamiltonian HM with known ground state/energy to

Problem Hamiltonian HP whose ground state solve our

problem.

HM → HP =⇒ |+⟩ → |000111⟩

Each layer of the circuit represents a small time step∆t and
has 2 free parameters.

• ma-QAOA: What if each qubit has it’s own free parameter?

• XQAOA: What if there is also another Mixer Hamiltonian,

HX ?

• FALQON: Purely quantum. What if we iteratively build the

circuit where the next free parameter depends on an

expectation value of the current circuit?

(unmentioned: ADAPT-QAOA, WSQAOA)

Source: Vijendran et al. 2023 [2302.04479]
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Algorithms [Feedback-based ALgorithm for Quantum OptimizatioN]

• QAOA: Discretize the adiabatic evolution fromMixer
Hamiltonian HM with known ground state/energy to

Problem Hamiltonian HP whose ground state solve our

problem.

HM → HP =⇒ |+⟩ → |000111⟩

Each layer of the circuit represents a small time step∆t and
has 2 free parameters.

• ma-QAOA: What if each qubit has it’s own free parameter?

• XQAOA: What if there is also another Mixer Hamiltonian,

HX ?

• FALQON: Purely quantum. What if we iteratively build the

circuit where the next free parameter depends on an

expectation value of the current circuit?

(unmentioned: ADAPT-QAOA, WSQAOA)

Source: Magann et al. 2022 [2103.08619]
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Results: H = H0 = difference2
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Results: H = H0 + λH1 = difference2 + λsum
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Results: Mass Distribution

QAOA

maQAOA

H0 H0 + λH1
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Conclusion

To Sum Up:
• VQAs can be effective in finding the ground state of a

Hamiltonian

• Choice of Hamiltonian is essential for solving the

combinatorial problem

• Issues can arise navigating the parameter space:

▶ Low expressibility

▶ Barren plateaus

Other Routes:
• Look at asymmetric production via tW
• Look at effects of noisy circuits

• Look at choice of λ and other potential Hamiltonians
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QAOA Circuit

• One qubit for each final state particle

▶ n = 6 qubits in the t t̄ decay

• The mixer layer consists of 6 1-qubit RX gates with rotation βk

• The problem layer consists of

(
6

2

)
= 15 RZZ gates with

rotation Jijγk between the i and j qubit
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Quantum Approximation Optimization Algorithm

(QAOA)

• Start with Hamiltonian

H(t) =
(
1− a(t)

)
HM + a(t) HP

such that a(0) = 0 and a(T ) = 1

▶ Means that we start in system HM and, if T is large, slowly

evolve into state HP

▶ Mixer Hamiltonian: HM, an easily solvable system with easily

initializable eigenstates, usually HM =
∑

σk
x

▶ Problem Hamiltonian: HP , Hamiltonian whose minimum

energy state is the answer we wish to find

• Exploit the adiabatic theorem: start in ground state of HM,

evolve slowly into ground state of HP

e.g. a(t) = t/T

Original paper: Farhi et al. 2014 [1411.4028]
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Quantum Approximation Optimization Algorithm

(QAOA)

Remember from our quantum mechanics courses:

H |ψ⟩ = i
∂

∂t
|ψ⟩ =⇒ |ψ⟩ = e−iHt |ψ0⟩

In our case, |ψ⟩ = |θ⟩. What do we choose for |ψ0⟩? How do we do

time-evolution on a circuit?

Result:

• Our state is: |β,γ⟩ =
p∏

j=1

U(βj,HM)U(γj,HP) |+⟩⊗n

where U(βj,HM) = exp [−iβjHM] ,

U(γj,HP) = exp [−iγjHP ]

and p is the depth of the circuit

Ground state of HM

Original paper: Farhi et al. 2014 [1411.4028]
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Quantum Approximation Optimization Algorithm

(QAOA)

Continuous time-evolution approximated by small discrete steps
alternating applications of the Hamiltonians

• Circuit: |β,γ⟩ =
p∏

j=1

U(βj,HM)U(γj,HP) |+⟩⊗n

▶ This approximation is exact when p → ∞

• Mixer Hamiltonian: HM =
n∑

k=1

σkx

▶ As quantum gates:

exp

[
−iβj

n∑
k=1

σk
x

]
=

n∏
k=1

e−iβjσ
k
x =

n∏
k=1

RX (βj)

• Problem Hamiltonian: HP depends on problem

▶ Can we write it as Pauli matrices?

• Goal: minimize ⟨β,γ|HP |β,γ⟩

Just X rotations

on every qubit

Original paper: Farhi et al. 2014 [1411.4028]
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Quantum Approximation Optimization Algorithm

(QAOA)

|0⟩ H

U(ĤP , γ1) U(HM, β1)

· · ·

|0⟩ H · · ·
.
.
.

|0⟩ H · · ·

· · ·

U(HP , γp) U(HM, βp)
· · ·

· · ·


|γ,β⟩

Original paper: Farhi et al. 2014 [1411.4028]
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Quantum Approximation Optimization Algorithm

(QAOA)

But there are problems!
• How quickly does it converge?

▶ We don’t have the technology for a circuit of O(10) depth, let
alone∞ depth

• How easy is it to navigate the parameter space?

▶ Are there many local minima to get stuck in?

▶ Barren plateaus?

• “...short-depth QAOA is not really the digitized version of the

adiabatic problem, but rather an ad hoc ansatz, and as a result

should not be expected to perform optimally, or even well.”

▶ From Zhu et al. 2022 [2005.10258]

So we say good riddance to the justification of this
approximate adiabaticity and consider other ansatzes

Original paper: Farhi et al. 2014 [1411.4028]
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Multi-Angle QAOA (ma-QAOA)

• Expressibility is a circuit’s ability to explore its Hilbert space

▶ Or, for a single qubit, to traverse the Bloch sphere

• Idea: give every gate its own free parameter:

U(βj,HM) = exp

[
−iβj

n∑
k=1

σkx

]
⇓

U(βj,HM) = exp

[
−i

n∑
k=1

βjkσ
k
x

]

• This allows for lower depth circuits that are more accessible

with current quantum computers, i.e. NISQ era

• Tradeoff between the quantum and classical computers

Original paper: Herrman et al. 2021 [2109.11455]
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Feedback-based ALgorithm for Quantum

OptimizatioN (FALQON)

• A purely quantum algorithm – no optimization

• Considers the Hamiltonian: H(t) = HP + β(t)HM

• Want

d
dt

⟨ψ(t)|HP |ψ(t)⟩ ≤ 0 =⇒ A(t)β(t) ≤ 0

where A(t) = ⟨ψ(t)|i[HM,HP ]|ψ(t)⟩
• Choose β(t) = −A(t − 2∆t) and descritize: βk+1 = −Ak

• Our state is: |β⟩ =
p∏

j=1

U(βj,HM)U(HP)

▶ where U(βj,HM) = e−iβjHM∆t
and U(HP) = e−iHP∆t
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eXpressive QAOA (XQAOA)

Sacrifice away adiabaticity for even more expressibility

• Add another mixer Hamiltonian to ma-QAOA: HX =
n∑

k=1

σky

• Our quantum state is now

|α,β,γ⟩ =
p∏

j=1

U(αj,HX )U(βj,HM)U(γj,HP) |+⟩⊗n

• ma-QAOA is just XQAOA when α = 0

Original paper: Vijendran et al. 2023 [2302.04479]
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Adaptive Derivative Assembled Problem Tailored

QAOA (ADAPT-QAOA)

The kitchen sink emporium
• The choice of mixer Hamiltonian is not fixed but rather chosen

from a pool, A, in an iterative fashion

• Choice made by whichever maximizes energy gradient.

Calculate

∆Ek(Aj) =
∂

∂βk
⟨ψk |HP |ψk⟩

∣∣∣∣
βk=0

for each Aj then choose Ak = argmax
Aj∈A

∆Ek(Aj) as the mixer

Hamiltonian for layer k.
• Optimize circuit as with normal QAOA and repeat for next

layer

Original paper: Zhu et al. 2022 [2005.10258]
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