RESOLVING COMBINATORIAL PROBLEMS WITH QUANTUM ALGORITHMS

Jacob Scott

In collaboration with

Cosmos Dong, Taejoon Kim, KC Kong, Myeonghun Park

PHENO 2024

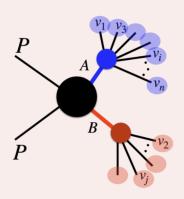
May 13, 2024

Intro Problem Setup Results Conclusion References Extras

Structure of talk

- Problem at hand
 - And current alternatives
- Setting up the problem
- Quantum algorithms in question (VQAs)
- 4 Current results

The problem



 $2 \rightarrow 2 \rightarrow n$ collision. From Kim et al. 2021 [2111.07806]

- Binary classification: did particle ν_i come from A or B?
- A QUBO¹ problem: Quadratic Unconstrained Binary Optimization problem:

For an *n*-bit string x, find x^* such that it minimizes

$$f_w(x) = \sum_{i,j=1}^n w_{ij} x_i x_j$$

Specific case: $pp o t ar{t}$

Two dominant decay modes for *t*:

- Leptonic: $t \to W^+ b \to \ell \nu_\ell b$
 - ▶ Cleaner only one jet
 - ▶ But there's missing momentum
- Hadronic: $t \to W^+ b \to q\bar{q}b$
 - ▶ No missing momentum
 - ▶ But messier 3 quarks creating 3 jets

Our focus has been on the latter case:

$$pp
ightarrow t ar{t}
ightarrow q ar{q} q' ar{q'} b ar{b}$$
 (i.e. 6 jets)

INTRO PROBLEM SETUP RESULTS CONCLUSION REFERENCES EXTRAS

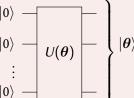
Alternate methods

- Kinematic methods like the hemisphere method [1]
 - Make assertions and assumptions of the kinematics of the system
- Machine learning
 - Great at finding and learning patterns
 - ▶ Lot of research that can be applied in HEP, e.g. SPANET (2106.03898, 2012.03542)
 - Classical, so still limited by exponential growth of complexity
- Quantum annealing (2111.07806)
 - ► Can find the global minimum
 - Smaller energy gaps between eigenvalues requires larger relaxation times
 - ▶ Limited with degenerate eigenvalues

Variational Quantum Algorithms

If you know neural networks keep that in mind

- We have some operator C whose expectation value, $\langle \theta | C | \theta \rangle$ we want to extremize
 - ► The state $|\theta\rangle$ is parameterized by parameters $\theta = (\theta_1, \theta_2, \dots, \theta_n)$
 - ▶ e.g. for this talk, think *C* is a Hamiltonian and we wish to find the ground state energy
- $ullet \; |m{ heta}
 angle$ can be created with a quantum circuit: $\mathit{U}(m{ heta})\ket{0} = \ket{m{ heta}}$
- Use a classical optimizer to update the parameters $heta_n o heta_{n+1}$ and repeat
 - ► They are *hybrid* algorithms

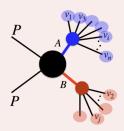


Setup

 With QAOA on our mind, is there a Hamiltonian that we can use?

$$H = (p_A^2 - p_B^2)^2$$
 where
$$\begin{cases} p_A = \sum x_i p_i \\ p_B = \sum (1 - x_i) p_i \end{cases}$$

and $x_i = 1$ if particle i is associated with A, otherwise 0



Setup

 With QAOA on our mind, is there a Hamiltonian that we can use?

$$H = (p_A^2 - p_B^2)^2$$
 where
$$\begin{cases} p_A = \sum x_i p_i \\ p_B = \sum (1 - x_i) p_i \end{cases}$$

and $x_i = 1$ if particle i is associated with A, otherwise 0

• Change from indicator variables to spin: $x_i = (1 + s_i)/2$,

$$H = \sum_{ij} J_{ij} s_i s_j$$
 where $J_{ij} = \sum_{k\ell} (p_i \cdot p_k) (p_j \cdot p_\ell)$

Setup

With QAOA on our mind, is there a Hamiltonian that we can use?

$$H = (p_A^2 - p_B^2)^2$$
 where
$$\begin{cases} p_A = \sum x_i p_i \\ p_B = \sum (1 - x_i) p_i \end{cases}$$

and $x_i = 1$ if particle *i* is associated with *A*, otherwise 0

• Change from indicator variables to spin: $x_i = (1 + s_i)/2$,

$$H = \sum_{ij} J_{ij} s_i s_j$$
 where $J_{ij} = \sum_{k\ell} (p_i \cdot p_k) (p_j \cdot p_\ell)$

• Since $s_i = \pm 1$, we can write our Hamiltonian operator as

$$H_P = \sum_{ij} J_{ij} \sigma_z^i \sigma_z^j.$$

Eigenvalues are ± 1 and eigenvectors are computation basis vectors

Algorithms [Quantum Approximation Optimization Algorithm]

 QAOA: Discretize the adiabatic evolution from Mixer **Hamiltonian** H_M with known ground state/energy to **Problem Hamiltonian** H_P whose ground state solve our problem.

$$H_M \rightarrow H_P \implies |+\rangle \rightarrow |000111\rangle$$

Each layer of the circuit represents a small time step Δt and has 2 free parameters.

Algorithms [multiangle-QAOA]

 QAOA: Discretize the adiabatic evolution from Mixer Hamiltonian H_M with known ground state/energy to Problem Hamiltonian H_P whose ground state solve our problem.

$$H_M \rightarrow H_P \implies |+\rangle \rightarrow |000111\rangle$$

Each layer of the circuit represents a small time step Δt and has 2 free parameters.

• ma-QAOA: What if each qubit has it's own free parameter?

Algorithms [expressive QAOA]

 QAOA: Discretize the adiabatic evolution from Mixer **Hamiltonian** H_M with known ground state/energy to **Problem Hamiltonian** H_P whose ground state solve our problem.

$$H_M \rightarrow H_P \implies |+\rangle \rightarrow |000111\rangle$$

Each layer of the circuit represents a small time step Δt and has 2 free parameters.

- ma-QAOA: What if each qubit has it's own free parameter?
- **XQAOA**: What if there is also another Mixer Hamiltonian, H_X ?

tro Problem **Setup** Results Conclusion References Extras

Algorithms [Feedback-based Algorithm for Quantum OptimizatioN]

• **QAOA**: Discretize the adiabatic evolution from **Mixer Hamiltonian** H_M with known ground state/energy to **Problem Hamiltonian** H_P whose ground state solve our problem.

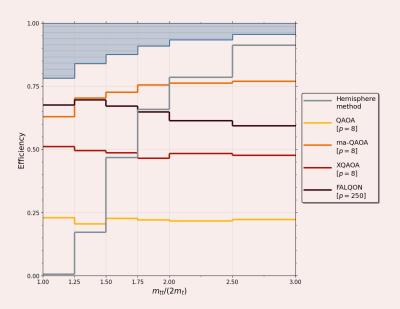
$$H_M \rightarrow H_P \implies |+\rangle \rightarrow |000111\rangle$$

Each layer of the circuit represents a small time step Δt and has 2 free parameters.

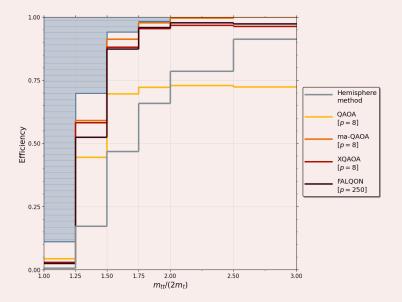
- ma-QAOA: What if each qubit has it's own free parameter?
- **XQAOA**: What if there is also another Mixer Hamiltonian, H_X ?
- **FALQON**: Purely quantum. What if we iteratively build the circuit where the next free parameter depends on an expectation value of the current circuit?

(unmentioned: ADAPT-QAOA, WSQAOA)

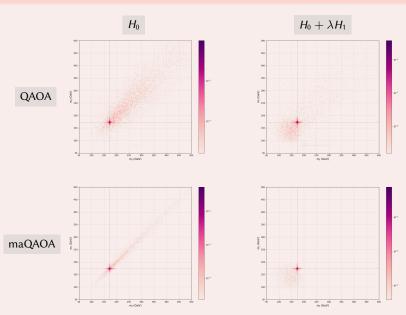
Results: $H = H_0 = \text{difference}^2$



Results: $H = H_0 + \lambda H_1 = \text{difference}^2 + \lambda \text{sum}$



Results: Mass Distribution



INTRO PROBLEM SETUP RESULTS CONCLUSION REFERENCES EXTRAS

Conclusion

To Sum Up:

- VQAs can be effective in finding the ground state of a Hamiltonian
- Choice of Hamiltonian is essential for solving the combinatorial problem
- Issues can arise navigating the parameter space:
 - Low expressibility
 - Barren plateaus

Other Routes:

- Look at asymmetric production via tW
- Look at effects of noisy circuits
- Look at choice of λ and other potential Hamiltonians

tro Problem Setup Results Conclusion **References** Extras

References

[1] G. L. Bayatian et al. "CMS technical design report, volume II: Physics performance". In: *J. Phys. G* 34.6 (2007), pp. 995–1579. DOI: 10.1088/0954-3899/34/6/S01.

- [2] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. *A Quantum Approximate Optimization Algorithm.* 2014. arXiv: 1411.4028 [quant-ph].
- [3] Rebekah Herrman et al. *Multi-angle Quantum Approximate Optimization Algorithm.* 2021. arXiv: 2109.11455 [quant-ph].
- [4] Minho Kim et al. Leveraging Quantum Annealer to identify an Event-topology at High
- Energy Colliders. 2021. arXiv: 2111.07806 [hep-ph].

 [5] Jason Sang Hun Lee et al. Zero-Permutation Jet-Parton Assignment using a
- Self-Attention Network. 2023. arXiv: 2012.03542 [hep-ex].

 [6] Alicia B. Magann et al. "Feedback-Based Quantum Optimization". In: Physical Review
- Letters 129.25 (2022). DOI: 10.1103/physrevlett.129.250502. eprint: 2103.08619. URL: https://doi.org/10.1103%2Fphysrevlett.129.250502.
- [7] Alexander Shmakov et al. "SPANet: Generalized permutationless set assignment for particle physics using symmetry preserving attention". In: SciPost Physics 12.5 (May 2022). DOI: 10.21468/scipostphys.12.5.178. eprint: 2106.03898. URL: https://doi.org/10.21468%2Fscipostphys.12.5.178.
- [8] V. Vijendran et al. An Expressive Ansatz for Low-Depth Quantum Optimisation. 2023. arXiv: 2302.04479 [quant-ph].
- [9] Linghua Zhu et al. An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. 2022. arXiv: 2005.10258 [quant-ph].

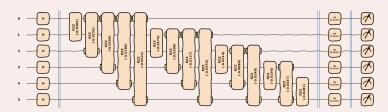
17

RO PROBLEM SETUP RESULTS CONCLUSION REFERENCES

QAOA Circuit

• One qubit for each final state particle

- n = 6 qubits in the $t\bar{t}$ decay
- The mixer layer consists of 6 1-qubit R_X gates with rotation β_k
- The problem layer consists of $\binom{6}{2} = 15 R_{ZZ}$ gates with rotation $J_{ii}\gamma_k$ between the i and j qubit



EXTRAS

Quantum Approximation Optimization Algorithm (QAOA)

Start with Hamiltonian

miltonian

e.g.
$$a(t) = t/T$$
 $H(t) = (1 - a(t))H_M + a(t)H_P$

such that a(0) = 0 and a(T) = 1

- ▶ Means that we start in system H_M and, if T is large, slowly evolve into state H_P
- ► Mixer Hamiltonian: H_M , an easily solvable system with easily initializable eigenstates, usually $H_M = \sum \sigma_x^k$
- ► **Problem Hamiltonian**: *H*_P, Hamiltonian whose minimum energy state is the answer we wish to find
- Exploit the adiabatic theorem: start in ground state of H_M , evolve slowly into ground state of H_P

Quantum Approximation Optimization Algorithm (QAOA)

Remember from our quantum mechanics courses:

$$H|\psi\rangle = i\frac{\partial}{\partial t}|\psi\rangle \Longrightarrow |\psi\rangle = e^{-iHt}|\psi_0\rangle$$

In our case, $|\psi\rangle = |\theta\rangle$. What do we choose for $|\psi_0\rangle$? How do we do time-evolution on a circuit?

Result:

Ground state of H_M

• Our state is:
$$|\beta, \gamma\rangle = \prod_{j=1}^{p} U(\beta_j, H_M) U(\gamma_j, H_P) |+\rangle^{\otimes n}$$

where
$$U(\beta_j, H_M) = \exp[-i\beta_j H_M]$$
,
 $U(\gamma_j, H_P) = \exp[-i\gamma_j H_P]$
and p is the **depth** of the circuit

Quantum Approximation Optimization Algorithm (QAOA)

Continuous time-evolution approximated by small discrete steps alternating applications of the Hamiltonians

• Circuit:
$$|\beta, \gamma\rangle = \prod_{i=1}^{p} U(\beta_j, H_M) U(\gamma_j, H_P) |+\rangle^{\otimes n}$$

- ▶ This approximation is exact when $p \to \infty$
- Mixer Hamiltonian: $H_M = \sum_{k=1}^{n} \sigma_x^k$

Just *X* rotations on every qubit

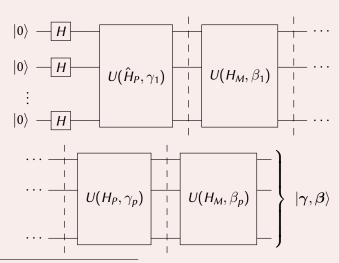
► As quantum gates:

$$\exp\left[-i\beta_j\sum_{k=1}^n\sigma_x^k\right] = \prod_{k=1}^n e^{-i\beta_j\sigma_x^k} = \prod_{k=1}^n R_X(\beta_j)$$

- **Problem Hamiltonian**: *H*_P depends on problem
 - ► Can we write it as Pauli matrices?
- **Goal**: minimize $\langle \beta, \gamma | H_P | \beta, \gamma \rangle$

ntro Problem Setup Results Conclusion References Extras

Quantum Approximation Optimization Algorithm (QAOA)



tro Problem Setup Results Conclusion References **Extras**

Quantum Approximation Optimization Algorithm (QAOA)

But there are problems!

- How quickly does it converge?
 - ▶ We don't have the technology for a circuit of $\mathcal{O}(10)$ depth, let alone ∞ depth
- How easy is it to navigate the parameter space?
 - ▶ Are there many local minima to get stuck in?
 - ▶ Barren plateaus?
- "...short-depth QAOA is not really the digitized version of the adiabatic problem, but rather an ad hoc ansatz, and as a result should not be expected to perform optimally, or even well."
 - ▶ From Zhu et al. 2022 [2005.10258]

So we say good riddance to the justification of this approximate adiabaticity and consider other ansatzes

- **Expressibility** is a circuit's ability to explore its Hilbert space
 - ▶ Or, for a single qubit, to traverse the Bloch sphere
- Idea: give every gate its own free parameter:

$$U(\beta_{j}, H_{M}) = \exp \left[-i\beta_{j} \sum_{k=1}^{n} \sigma_{x}^{k}\right]$$

$$\downarrow U(\beta_{j}, H_{M}) = \exp \left[-i \sum_{k=1}^{n} \beta_{jk} \sigma_{x}^{k}\right]$$

- This allows for lower depth circuits that are more accessible with current quantum computers, i.e. NISQ era
- Tradeoff between the quantum and classical computers

24

TRO PROBLEM

Setup

EXTRAS

Feedback-based ALgorithm for Quantum OptimizatioN (FALQON)

- A purely quantum algorithm no optimization
- Considers the Hamiltonian: $H(t) = H_P + \beta(t)H_M$
- Want

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\psi(t)|H_P|\psi(t)\rangle\leq 0\Longrightarrow A(t)\beta(t)\leq 0$$

where
$$A(t) = \langle \psi(t) | i[H_M, H_P] | \psi(t) \rangle$$

- Choose $\beta(t) = -A(t 2\Delta t)$ and descritize: $\beta_{k+1} = -A_k$
- Our state is: $|\beta\rangle = \prod_{j=1}^{p} U(\beta_j, H_M) U(H_P)$
 - where $U(\beta_j, H_M) = e^{-i\beta_j H_M \Delta t}$ and $U(H_P) = e^{-iH_P \Delta t}$

EXTRAS

eXpressive QAOA (XQAOA)

Sacrifice away adiabaticity for even more expressibility

- Add another mixer Hamiltonian to ma-QAOA: $H_X = \sum_{k=1}^{n} \sigma_y^k$
- Our quantum state is now

$$|\alpha, \beta, \gamma\rangle = \prod_{j=1}^{p} U(\alpha_j, H_X) U(\beta_j, H_M) U(\gamma_j, H_P) |+\rangle^{\otimes n}$$

• ma-QAOA is just XQAOA when $\alpha = \mathbf{0}$

ttro Problem Setup Results Conclusion References **Extras**

Adaptive Derivative Assembled Problem Tailored QAOA (ADAPT-QAOA)

The kitchen sink emporium

- The choice of mixer Hamiltonian is not fixed but rather chosen from a *pool*, A, in an iterative fashion
- Choice made by whichever maximizes energy gradient.
 Calculate

$$\Delta E_k(A_j) = \frac{\partial}{\partial \beta_k} \langle \psi_k | H_P | \psi_k \rangle \bigg|_{\beta_k = 0}$$

for each A_j then choose $A_k = \operatorname*{argmax}_{A_j \in \mathcal{A}} \Delta E_k(A_j)$ as the mixer Hamiltonian for layer k.

Optimize circuit as with normal QAOA and repeat for next layer