

Constraining Bosonic Asymmetric Dark Matter With Neutron Star Mass-Radius Measurements

Presented by: Nathan Rutherford Advisor: Chanda Prescod-Weinstein **Email: nathan.rutherford@unh.edu**

Authors: Nathan Rutherford, Geert Raaijmakers, Chanda Prescod-Weinstein, and Anna Watts

Based on Rutherford et al. (2023) arXiv: 2208.03282

Division of

ticles & Fiel

- Uncertainties In The Neutron Star Equation Of State (EoS)
- Neutron stars may contain exotic states of matter, e.g., deconfined quarks or hyperons.
- The effects of the hypothetical components are captured by the equation of state.
- The EoS can be deduced from measurable properties, e.g., the mass and radius.

Figure made by Anna Watts

- Uncertainties In The Neutron Star Equation Of State (EoS)
- Neutron stars may contain exotic states of matter, e.g., deconfined quarks or hyperons.
- The effects of the hypothetical components are captured by the equation of state.
- The EoS can be deduced from measurable properties, e.g., the mass and radius.

Figure made by Anna Watts

- Uncertainties In The Neutron Star Equation Of State (EoS)
- Neutron stars may contain exotic states of matter, e.g., deconfined quarks or hyperons.
- The effects of the hypothetical components are captured by the equation of state.
- The EoS can be deduced from measurable properties, e.g., the mass and radius.

Neutron stars are an excellent hunting ground for dark matter!

For the new mass-radius measurement of PSR J0437-4517 check out Choudhury et al. 2024 and Rutherford et al. 2024 (both in review at APJ Letters!)

Figure made by Anna Watts

- ² Asymmetric Dark Matter (ADM) In Neutron Stars
- ADM can accumulate in two spatial regimes: the neutron star core and in the exterior spacetime.
- ADM cores reduce the gravitational mass, radius, and tidal deformability.
- ADM halos increase the gravitational mass and tidal deformability.

ADM core

ADM halo

The *Bosonic* ADM Model

 \blacktriangleright Modeled after the Nelson et al. model¹.

 Describes MeV-GeV mass-scale bosonic ADM particles with repulsive self-interactions mediated by an eV-MeV mass-scale vector gauge boson.

 The defining parameters of this model are: *1)* The bosonic ADM particle mass (m_x) 2) The effective self-repulsion strength $\left(\frac{g_\chi}{m}\right)$ m_{ϕ})

3) The fraction of ADM mass inside the neutron star (F_x)

Using Bayesian Inference To Study Bosonic ADM In Neutron Stars

We perform a Bayesian analysis where we:

- o Vary the baryonic matter and ADM EoS
- Vary the ADM EoS, but fix the baryonic matter EoS

 For both cases, we consider synthetic mass and radius measurements and not allow for ADM halos since:

ADM halos modify the exterior spacetime

ADM could modify the universal relations that are used to model the oblateness

Source Selection

5

- Radius of the sources calculated using two ground-truth models:
- α "ADM Core Model": Baryonic neutron star with ADM core defined by [m_χ = 15 GeV, $\frac{g_\chi}{m_\chi/\Lambda}$ $\frac{g_\chi}{m_\phi/\text{MeV}} = 0.1$, $F_\chi = 7\ \%$]
- "No ADM Model": Identical to "ADM Core Model", except we set $F_x = 0$ %.

The ADM Priors

We sample uniformly in all three intervals and then eliminate any halo configurations.

4: Karkevandi et

Future et al. (2010) The set of the

 $log_{10}(m_x/MeV) = 6.40^{+1.1}_{-1.7}$ $log_{10}(\frac{g_{\chi}}{m_{\star}/MeV}) = -0.42^{+1.62}_{-1.14}$ \sim $log_{10}(\frac{g_{\chi}}{m_{\phi}/\text{MeV}})$ \sim \sim \circ \rightarrow $F_{\gamma} = 9.44^{+7.15}_{-6.68}$ γ $\sqrt{\circ}$ $\hat{\mathcal{L}}$ κ ዔ $\overline{}^o$ \sim 0 γ γ γ γ 2° κ ∞ \mathcal{L} \sim \sim $log_{10}(m_{\chi}/MeV)$ $log_{10}(\frac{g_{\chi}}{m_{\phi}/\text{MeV}})$ F_{χ}

The ADM Priors

^{4:} Karkevandi et a

⁷ *Future/ Future -X:* Varying Baryonic EoS

> ADM Core Model

- The 'Including ADM' band is noticeably wider than the 'Neglecting ADM' band.
- A stiffer baryonic EoS \Rightarrow posterior constraints from all NICER and STROBE-X sources can be relaxed if ADM is considered.

 Future - X can more tightly constrain the neutron star EoS than *Future* .

⁷ *Future/ Future-X:* Varying Baryonic EoS

> No ADM Model

- The 'Including ADM' band is noticeably wider than the 'Neglecting ADM' band.
- A stiffer baryonic EoS \Rightarrow posterior constraints from all NICER and STROBE-X sources can be relaxed if ADM is considered.
	- *Future-X* can more tightly constrain the neutron star EoS than *Future*.

8 *Future/ Future-X:* Fixed ADM Baryonic EoS Core Model**The ratio of** $\log_{10}\left(\frac{g_{\chi}}{m_{\chi}/N}\right)$ and $m_{\boldsymbol\phi}$ /MeV $\log_{10} (m_\chi/\textrm{MeV})$ is constrained to a stripe. Future Future-X $log_{10}(m_x/MeV) = 5.58^{+1.5}_{-1.6}$ $log_{10}(m_x/MeV) = 5.59^{+1.59}_{-1.62}$ Posterior Prior The stripe widens for "No ADM" Ground Truth model. $log_{10}(\frac{g_{\chi}}{m_{\gamma}/M_{\text{eV}}}) = 0.43^{+1.59}_{-1.66}$ $log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV}) = 0.31^{+1.60}_{-1.58}$ g_{χ} / m_{ϕ} and m_{χ} are individually $\mathsf{og}_{10}(\frac{g_\chi}{m_\phi/\mathsf{MeV}})$ $log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ γ unconstrained. \sim $F_{\chi} = 7.43^{+2.36}_{-2.36}$ $F_{\chi} = 7.77^{+3.65}_{-3.71}$ Gaussian-like shape of the 1-D F_{χ} γ $\sqrt{\circ}$ posteriors \Rightarrow tight constraints on $F_{\mathbf{y}}$ $\hat{\mathcal{Y}}$ F_{χ} F_{χ} can be imposed. σ 6^{0} γ . 2690 γ ^O κ ∞ 2600 \sim 0 \sim 2° κ $\mathcal{O}_{\mathcal{O}}$ λ . \sim \circ γ γ γ \triangleright ∞ *Future-X* will be able to provide $log_{10}(m_x/MeV)$ F_{χ} $log_{10}(m_x/MeV)$ F_{χ} $log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ $log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$ tighter constraints on F_γ than *Future*.

8 *Future/ Future-X:* Fixed ADM Baryonic EoS Core Model**The ratio of** $\log_{10}\left(\frac{g_{\chi}}{m_{\chi}/N}\right)$ and $m_{\boldsymbol\phi}$ /MeV $\log_{10} (m_\chi/\textrm{MeV})$ is constrained to a stripe. Future Future-X $log_{10}(m_x/MeV) = 5.58^{+1.5}_{-1.6}$ $log_{10}(m_x/MeV) = 5.59^{+1.59}_{-1.62}$ Posterior Prior The stripe widens for "No ADM" Ground Truth model. $log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV}) = 0.43^{+1.59}_{-1.66}$ $\log_{10}(\frac{g_{\chi}}{m_{\phi}/M_{\text{eV}}}) = 0.31^{+1.60}_{-1.58}$ g_{χ} / m_{ϕ} and m_{χ} are individually **SOLO (mailWell) 910 ma/Me** unconstrained. $F_{\chi} = 7.43^{+2.36}_{-2.36}$ $F_{\chi} = 7.77^{+3.65}_{-3.71}$ Gaussian-like shape of the 1-D F_{χ} \sim posteriors \Rightarrow tight constraints on $F_{\mathbf{y}}$ ⇘ F_{χ} F_{χ} can be imposed. σ 2600 γ ^O κ $\mathcal{O}_{\mathcal{O}}$ \sim 0 ∞ 2600 \rightsquigarrow 2° κ $\mathcal{O}_{\mathcal{O}}$ λ . \sim 0 22 \triangleright ∞ *Future-X* will be able to provide $log_{10}(m_x/MeV)$ F_{χ} $log_{10}(m_x/MeV)$ F_X $log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ $log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$ tighter constraints on F_γ than *Future*.

Future/ Future-X: Fixed No Baryonic EoS ADM Model**The ratio of** $\log_{10}\left(\frac{g_{\chi}}{m_{\chi}/N}\right)$ and $m_{\boldsymbol\phi}$ /MeV $\log_{10} (m_\chi/\textrm{MeV})$ is constrained to a stripe. Future Future-X Future Future-X $log_{10}(m_x/MeV) = 5.77^{+1.42}_{-1.58}$ $log_{10}(m_x/MeV) = 5.70^{+1.55}_{-1.56}$ The stripe widens for "No ADM" model. $log_{10}(\frac{g_{\chi}}{m_{\text{e}}/M_{\text{e}}V}) = 0.12^{+1.53}_{-1.42}$ $log_{10}(\frac{g_{\chi}}{m_{\text{e}}/MeV}) = 0.22^{+1.59}_{-1.49}$ g_{χ} / m_{ϕ} and m_{χ} are individually $log_{10}(\frac{g_\chi}{m_\phi/M{\rm eV}})$ $(\frac{\Delta \mathcal{W}^{\phi_{\text{UL}}}}{\Delta \mathcal{S}_{\text{B}}})$ 01 unconstrained. \mathcal{O} $F_{\gamma} = 1.51^{+1.65}_{-1.05}$ $F_{\chi} = 3.26^{+3.17}_{-2.25}$ Gaussian-like shape of the 1-D F_{χ} no posteriors \Rightarrow tight constraints on F_{γ} $\hat{\mathbf{v}}$ κ_{x} F_{χ} can be imposed. \mathcal{P} κ $\mathcal{C}_{\mathcal{O}}$ γ^5 2° $\mathcal O$ $\mathcal{S}_{\mathcal{O}}$ Λ^{5} $\hat{\mathcal{N}}$ \sim \sim \circ *Future-X* will be able to provide $log_{10}(m_x/MeV)$ $log_{10}(m_x/MeV)$ F_χ F_X $log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ $log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$ tighter constraints on F_γ than *Future*.

8

Takeaways

9

- The current uncertainties of the baryonic EoS are being underestimated because the possibility of ADM cores is not currently being accounted for.
- If the baryonic EoS is constrained independent of ADM, i.e., fixed, the ratio of $\log_{10}\left(\frac{g_\chi}{m_\chi/\Lambda}\right)$ $\left(\frac{\omega_X}{m_\phi/\textrm{MeV}}\right)$ and $\log_{10} (m_\chi/\textrm{MeV})$, and F_γ can be tightly constrained.
- We have shown the value in performing full inference runs on the ADM parameter space, rather than drawing conclusions only from the effects of ADM on the mass-radius relation.

The Review

NH

Extra Slides

11

12 Accumulation methods of ADM in neutron stars

- \triangleright One possibility: neutron bremsstrahlung of ADM¹ and neutron conversion to scalar ADM²
- ➢ Both processes combined can produce ADM masses of $0.07 M_{\rm Ns}$.
- ➢ To achieve high ADM fractions for higher ADM particle masses other possibilities must be considered:
	- o Accretion of baryonic matter onto a pre-existing ADM core³
		- o A neutron star passed through a local ADM over-density³
			- o Absorption of an ADM star by baryonic matter²

1. [Nelson et al. \(2018\) arXiv: 1803.03266](https://arxiv.org/abs/1803.03266) 2. [Ellis et al. \(2018\) arXiv: 1804.01418](https://arxiv.org/abs/1804.01418)

- ¹³ *Future/ Future-X:* Varying Baryonic EoS (extra slide)
- The PDF contours widen along the \log_{10} g_χ $m_{\boldsymbol{\phi}}$ MeV⁻¹ $/(m_\chi/MeV)$ axis for low F_{χ} .

 \triangleright If the actual F_χ in neutron stars is sufficiently large, the ratio of g_{χ}/m_{ϕ} and m_{χ} can be well constrained.

¹⁴ *Future/ Future-X:* Varying Baryonic EoS (extra slide) The PDF contours widen along g_χ the \log_{10} $/(m_\chi/MeV)$ $m_{\boldsymbol{\phi}}$ MeV⁻¹ axis for low F_{χ} . 20.0 17.5 15.0 \triangleright If the actual F_χ in neutron stars 12.5 is sufficiently large, the ratio of \times 10.0 g_{χ}/m_{ϕ} and m_{χ} can be well 7.5 constrained.

