

Division of Particles & Fields

University of

Constraining Bosonic Asymmetric Dark Matter With Neutron Star Mass-Radius Measurements

<u>Presented by:</u> Nathan Rutherford <u>Email:</u> nathan.rutherford@unh.edu <u>Advisor:</u> Chanda Prescod-Weinstein

Authors: Nathan Rutherford, Geert Raaijmakers, Chanda Prescod-Weinstein, and Anna Watts Based on Rutherford et al. (2023) arXiv: 2208.03282

- ¹ Uncertainties In The Neutron Star Equation Of State (EoS)
- Neutron stars may contain exotic states of matter, e.g., deconfined quarks or hyperons.
- The effects of the hypothetical components are captured by the equation of state.
- The EoS can be deduced from measurable properties, e.g., the mass and radius.

Figure made by Anna Watts

- ¹ Uncertainties In The Neutron Star Equation Of State (EoS)
- Neutron stars may contain exotic states of matter, e.g., deconfined quarks or hyperons.
- The effects of the hypothetical components are captured by the equation of state.
- The EoS can be deduced from measurable properties, e.g., the mass and radius.

Figure made by Anna Watts

- ¹ Uncertainties In The Neutron Star Equation Of State (EoS)
- Neutron stars may contain exotic states of matter, e.g., deconfined quarks or hyperons.
- The effects of the hypothetical components are captured by the equation of state.
- The EoS can be deduced from measurable properties, e.g., the mass and radius.

Neutron stars are an excellent hunting ground for dark matter! For the new mass-radius measurement of PSR J0437-4517 check out Choudhury et al. 2024 and Rutherford et al. 2024 (both in review at APJ Letters!)

Figure made by Anna Watts

- ² Asymmetric Dark Matter (ADM) In Neutron Stars
- ADM can accumulate in two spatial regimes: the neutron star core and in the exterior spacetime.
- ADM cores reduce the gravitational mass, radius, and tidal deformability.
- ADM halos increase the gravitational mass and tidal deformability.

ADM core

ADM halo

The Bosonic ADM Model

Modeled after the Nelson et al. model¹.

 Describes MeV-GeV mass-scale bosonic ADM particles with repulsive self-interactions mediated by an eV-MeV mass-scale vector gauge boson.

The defining parameters of this model are: 1) The bosonic ADM particle mass (m_{χ}) 2) The effective self-repulsion strength $(\frac{g_{\chi}}{m_{\phi}})$

3) The fraction of ADM mass inside the neutron star (F_{χ})

⁴ Using Bayesian Inference To Study Bosonic ADM In Neutron Stars

We perform a Bayesian analysis where we:

- Vary the baryonic matter and ADM EoS
- Vary the ADM EoS, but fix the baryonic matter EoS

For both cases, we consider synthetic mass and radius measurements and not allow for ADM halos since:

ADM halos modify the exterior spacetime

ADM could modify the universal relations that are used to model the oblateness

Source Selection

5

- Radius of the sources calculated using two ground-truth models:
- "ADM Core Model": Baryonic neutron star with ADM core defined by [$m_{\chi} = 15 \text{ GeV}, \frac{g_{\chi}}{m_{\phi}/\text{MeV}} = 0.1, F_{\chi} = 7 \%$]
- "No ADM Model": Identical to "ADM Core Model", except we set $F_{\gamma} = 0$ %.

The ADM Priors

4:

We sample uniformly in all three intervals and then eliminate any halo configurations.

<u>Future-X</u>

The ADM Priors

3

2

 $\mathbf{\hat{\mathbf{y}}}$

0

 γ

r

~%

v

ծ

 $\log_{10}(\frac{g_{\chi}}{m_{\varphi}/MeV})$

 $\vec{\lambda}$

: <u>Kourvaris & Tinyakov (2011),</u> 2: <u>Bramante et al. (2013),</u> 3: <u>Nelson et al</u> 2018), 4: <u>Karkevandi et al. (2022)</u> ⁷ Future / Future - X: Varying Baryonic EoS

ADM

Core

Model

- The 'Including ADM' band is noticeably wider than the 'Neglecting ADM' band.
- A stiffer baryonic EoS ⇒ posterior constraints from all NICER and STROBE-X sources can be relaxed if ADM is considered.

Future-X can more tightly constrain the neutron star EoS than Future.

⁷ Future / Future - X: Varying Baryonic EoS

> No ADM

Model

- The 'Including ADM' band is noticeably wider than the 'Neglecting ADM' band.
- A stiffer baryonic EoS ⇒ posterior constraints from all NICER and STROBE-X sources can be relaxed if ADM is considered.
 - Future-X can more tightly constrain the neutron star EoS than Future.

8 Future / Future - X: Fixed ADM Baryonic EoS Core Model The ratio of $\log_{10}\left(\frac{g_{\chi}}{m_{\phi}/\text{MeV}}\right)$ and $\log_{10}(m_{\gamma}/\text{MeV})$ is constrained to a stripe. Future-X Future $\log_{10}(m_{\chi}/MeV) = 5.58^{+1}_{-1}$ $\log_{10}(m_{\gamma}/MeV) = 5.59^{+1.59}_{-1.63}$ Posterior Prior The stripe widens for "No ADM" Ground Truth model. $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV}) = 0.43^{+1.59}_{-1.66}$ $\log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV}) = 0.31^{+1.60}_{-1.58}$ g_{χ} / m_{ϕ} and m_{χ} are individually $og_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ $\log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ r unconstrained. \sim $F_{\gamma} = 7.43^{+2.36}_{-2.36}$ $F_{\chi} = 7.77^{+3.65}_{-3.71}$ Gaussian-like shape of the 1-D F_{γ} 20 ~% posteriors \implies tight constraints on F_{γ} \sqrt{r} \vec{x} $_{\times}$ can be imposed. ծ D 2 20 20 60 3.0 N.S. 20 ୫ 20 6. 19 $\sim \lambda$ 0 2 20 20 N.S 20 3 ୫ Future-X will be able to provide $\log_{10}(m_{\chi}/MeV)$ Fχ $\log_{10}(m_{\chi}/MeV)$ Fχ $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$ $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$

tighter constraints on F_{γ} than Future.

8 Future / Future - X: Fixed ADM Baryonic EoS Core Model The ratio of $\log_{10}\left(\frac{g_{\chi}}{m_{\phi}/\text{MeV}}\right)$ and $\log_{10}(m_{\gamma}/\text{MeV})$ is constrained to a stripe. Future-X Future $\log_{10}(m_{\chi}/MeV) = 5.58^{+1}_{-1}$ $\log_{10}(m_{\gamma}/MeV) = 5.59^{+1.59}_{-1.63}$ Posterior Prior The stripe widens for "No ADM" Ground Truth model. $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV}) = 0.43^{+1.59}_{-1.66}$ $\log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV}) = 0.31^{+1.60}_{-1.58}$ g_{χ} / m_{ϕ} and m_{χ} are individually 910(³/MeV 10010(^{9,}////0100 unconstrained. \sim $F_{\gamma} = 7.43^{+2.36}_{-2.36}$ $F_{\chi} = 7.77^{+3.65}_{-3.71}$ Gaussian-like shape of the 1-D F_{γ} \$ posteriors \implies tight constraints on F_{γ} r \mathbf{L}^{\times} $_{\times}^{F}$ can be imposed. ծ D A.S. 2 20 20 60 30 20 ୫ 2 20 20 20 6. 15 $\gamma \lambda \gamma$ 0 ୫ N.S 20 Future-X will be able to provide $\log_{10}(m_{\chi}/MeV)$ Fχ $\log_{10}(m_{\gamma}/MeV)$ Fχ $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$ $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$

tighter constraints on F_{γ} than Future.

8 Future / Future - X: Fixed No Baryonic EoS ADM Model The ratio of $\log_{10}\left(\frac{g_{\chi}}{m_{\phi}/\text{MeV}}\right)$ and $\log_{10}(m_{\gamma}/\text{MeV})$ is constrained to a stripe. Future Future-X $\log_{10}(m_{\chi}/MeV) = 5.77^{+1.4}_{-1.5}$ $\log_{10}(m_{\chi}/MeV) = 5.70^{+1.5}_{-1.5}$ The stripe widens for "No ADM" model. $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV}) = 0.12^{+1.53}_{-1.42}$ $\log_{10}(\frac{g_{\chi}}{m_{\bullet}/MeV}) = 0.22^{+1.59}_{-1.49}$ g_{χ} / m_{ϕ} and m_{χ} are individually $\log_{10}(\frac{g_{\chi}}{m_{\phi}/MeV})$ log₁₀(<u>g_x</u>) unconstrained. 0 $F_{\gamma} = 1.51^{+1.65}_{-1.05}$ $F_{\chi} = 3.26^{+3.17}_{-2.25}$ Gaussian-like shape of the 1-D F_{γ} 2º posteriors \Rightarrow tight constraints on F_{γ} Ŷ \vec{x} ч× can be imposed. ଚ 3.0 N.S. 6.0 19 0 60 1? \mathcal{V} \$ 20 *Future-X* will be able to provide $\log_{10}(m_{\gamma}/MeV)$ Fχ $\log_{10}(\frac{g_{\chi}}{m_{\star}/MeV})$ $\log_{10}(m_{\chi}/MeV)$ Fχ $\log_{10}(\frac{g_{\chi}}{m_*/MeV})$ tighter constraints on F_{γ} than Future.

Takeaways

9

- The current uncertainties of the baryonic EoS are being underestimated because the possibility of ADM cores is not currently being accounted for.
- If the baryonic EoS is constrained independent of ADM, i.e., fixed, the ratio of $\log_{10}\left(\frac{g_{\chi}}{m_{\phi}/\text{MeV}}\right)$ and $\log_{10}(m_{\chi}/\text{MeV})$, and F_{χ} can be tightly constrained.
- We have shown the value in performing full inference runs on the ADM parameter space, rather than drawing conclusions only from the effects of ADM on the mass-radius relation.

Thank you!

NH

Extra Slides

11

²Accumulation methods of ADM in neutron stars

- One possibility: neutron bremsstrahlung of ADM¹ and neutron conversion to scalar ADM²
- Both processes combined can produce ADM masses of 0.07 M_{Ns}.
- To achieve high ADM fractions for higher ADM particle masses other possibilities must be considered:
 - Accretion of baryonic matter onto a pre-existing ADM core³
 - A neutron star passed through a local ADM over-density³
 - Absorption of an ADM star by baryonic matter²

<u>Nelson et al. (2018) arXiv: 1803.03266</u> <u>Ellis et al. (2018) arXiv: 1804.01418</u> Karkevandi et al. (2022) arXiv: 2109.0380

- Baryonic EoS (extra slide) The PDF contours widen along the $\log_{10}\left(\frac{g_{\chi}}{m_{\phi} \text{ MeV}^{-1}}/(m_{\chi}/\text{MeV})\right)$
 - axis for low F_{γ} .

If the actual F_{χ} in neutron stars is sufficiently large, the ratio of g_{χ}/m_{ϕ} and m_{χ} can be well constrained.

- The PDF contours widen along the $\log_{10}\left(\frac{g_{\chi}}{m_{\phi} \text{ MeV}^{-1}}/(m_{\chi}/\text{MeV})\right)$
 - axis for low F_{γ} .

If the actual F_{χ} in neutron stars is sufficiently large, the ratio of g_{χ}/m_{ϕ} and m_{χ} can be well constrained.

