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Uncertainties In The Neutron Star
Equation Of State (EoS)

Neutron stars may contain exotic states
of matter, e.g., deconfined quarks or
hyperons.

The effects of the hypothetical
components are captured by the
equation of state.

The EoS can be deduced from
measurable properties, e.g., the mass
and radius.
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2 Asymmetric Dark Matter (ADM) “apm core
In Neutron Stars

ADM can accumulate in two spatial regimes:
the neutron star core and in the exterior
spacetime.

ADM cores reduce the gravitational mass,
radius, and tidal deformability.

ADM halos increase the gravitational mass and ADM halo
tidal deformability. =

Image of the neutron star taken from:



https://newatlas.com/physics/neutron-stars-dark-matter-axion/

3 Two identical ADM particles repulsively self-

The Bosonic ADM Model . interacting

Modeled after the Nelson et al. model'.

Describes MeV-GeV mass-scale bosonic ADM particles
with repulsive self-inferactions mediated by an eV-MeV
mass-scale vector gauge boson.

The defining parameters of this model are:

1) The bosonic ADM particle mass (m,,)

2) The effective self-repulsion strength (g—")

3) The fraction of ADM mass inside the neutron star (F,)

1. Nelson et al. (2018) arXiv: 1803.0366



https://arxiv.org/abs/1803.03266

4 Using Bayesian Inference To Study Bosonic
ADM In Neutron Stars

Posterior

We perform a Bayesian analysis where we:
Vary the baryonic matter and ADM EoS

Likelihood

Vary the ADM EoS, but fix the baryonic matter EoS

For both cases, we consider synthetic mass and radius
measurements and not allow for ADM halos since:

ADM halos modify the exterior spacetime

ADM could modify the universal relations that are used
to model the oblateness

(Adapted from “Statistical Rethinking — Bayesian Analysis in R” by Marc Jacobs )



https://medium.com/mlearning-ai/statistical-rethinking-bayesian-analysis-in-r-e1e25aeb9a5c

Source Selection

Radius of the sources calculated using two ground-truth models:

: Baryonic neutron star with ADM core defined by [ m, = 15 GeV,
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The ADM Priors
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https://arxiv.org/abs/1104.0382
https://arxiv.org/abs/1301.0036
https://arxiv.org/abs/1803.03266
https://arxiv.org/abs/1803.03266
https://arxiv.org/abs/2109.03801
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/ Future/ Future-X: Varying

Baryonic EoS

The ‘Including ADM’
band is noticeably wider
than the ‘Neglecting
ADM’ band.

A stiffer baryonic EoS =
posterior constraints from
all NICER and STROBE-X
sources can be relaxed if
ADM is considered.

Future-X can more tightly
constrain the neutron star
EoS than Future.
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8 Future/ Future-X: Fixed -

Core

Baryonic EoS Core
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Future/ Future-X: Fixed
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Future/ Future-X: Fixed
Baryonic EoS

The ratio of log,, (mj—;\(/{ev) and
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model.
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Future-X
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The current uncertainties of the baryonic EoS are being
underestimated because the possibility of ADM cores is
not currently being accounted for.
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Thank you!
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mACCUI’ﬂUk]ﬂOI"I methods of ADM in neutron stars

> One possibility: neutron bremsstrahlung of ADM! and neutron
conversion to scalar ADM?2

» Both processes combined can produce ADM masses of
0.07 Mys.

» To achieve high ADM fractions for higher ADM particle masses
other possibilities must be considered:

o Accretion of baryonic matter onto a pre-existing ADM core?

o A neutron star passed through a local ADM over-density?



https://arxiv.org/abs/1803.03266
https://arxiv.org/abs/1804.01418
https://arxiv.org/abs/2109.03801
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4 Future/ Future-X: Varying
Baryonic EoS (extra slide)

The PDF contours widen along

9x
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axis for low F,.
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