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The Milky Way is a dark matter laboratory

Primordial dark matter seeded formation of all 
visible structures.
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The Milky Way is a dark matter laboratory

Primordial dark matter seeded formation of all 
visible structures.

Our galaxy sits inside of a massive halo of dark 
matter:

- Local density sets direct detection rate
- Density profile probes DM particle physics
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The Milky Way is a dark matter laboratory

Primordial dark matter seeded formation of all 
visible structures.

Our galaxy sits inside of a massive halo of dark 
matter:

- Local density sets direct detection rate
- Density profile probes DM particle physics

Nearby stars tell us much about our host halo:

- Stellar streams sensitive to subhalos
- Moment approaches: Rotation curves, Jeans 

analyses, etc…
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The Milky Way is a dark matter laboratory

Primordial dark matter seeded formation of all 
visible structures.

Our galaxy sits inside of a massive halo of dark 
matter:

- Local density sets direct detection rate
- Density profile probes DM particle physics

Nearby stars tell us much about our host halo:

- Stellar streams sensitive to subhalos
- Moment approaches: Rotation curves, Jeans 

analyses, etc…

Potential encoded in stellar phase space f(x,v)
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Phase Space of the Milky Way

Local stellar f(x,v) encodes the local gravitational 
potential 𝚽 via the equilibrium collisionless 
Boltzmann equation (CBE):
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Phase Space of the Milky Way

Local stellar f(x,v) encodes the local gravitational 
potential 𝚽 via the equilibrium collisionless 
Boltzmann equation (CBE):

Gaia DR3 provides the 6D kinematics of millions 
of nearby stars. We use a “complete” sample of 
~6 million Red Giant Branch stars w/in 4 kpc.
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Gaia render: ESA/ATG medialab/Gaia/DPAC; CC BY-SA 3.0 IGO.
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Phase Space of the Milky Way

Local stellar f(x,v) encodes the local gravitational 
potential 𝚽 via the equilibrium collisionless 
Boltzmann equation (CBE):

Gaia DR3 provides the 6D kinematics of millions 
of nearby stars. We use a “complete” sample of 
~6 million Red Giant Branch stars w/in 4 kpc.

Interstellar dust absorbs or scatters starlight, 
which dims stars below Gaia’s sensitivity limit. 

Suppression of f(x,v) biases our model of the 
MW’s gravitational potential.
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where did the stars go?
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How far can we go with dusty data?

We learned f(x,v) from dusty stellar data using 
masked autoregressive flows (MAFs), generative ML 
density estimators.
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How far can we go with dusty data?

We learned f(x,v) from dusty stellar data using 
masked autoregressive flows (MAFs), generative ML 
density estimators.

Used f(x,v) to solve CBE for the local acceleration 
a(x) pointwise in dust-free regions:

Local acceleration a(x) was consistent with prior 
parametric studies.
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How far can we go with dusty data?

We learned f(x,v) from dusty stellar data using 
masked autoregressive flows (MAFs), generative ML 
density estimators.

Used f(x,v) to solve CBE for the local acceleration 
a(x) pointwise in dust-free regions:

Local acceleration a(x) was consistent with prior 
parametric studies.

Gradient of a(x) yields the mass density field ρ(x).
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How far can we go with dusty data?

We learned f(x,v) from dusty stellar data using 
masked autoregressive flows (MAFs), generative ML 
density estimators.

Used f(x,v) to solve CBE for the local acceleration 
a(x) pointwise in dust-free regions:

Local acceleration a(x) was consistent with prior 
parametric studies.

Gradient of a(x) yields the mass density field ρ(x).
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Measured the dark matter halo density around 
the Earth and the halo density profile!

Disk Halo -><- Halo
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Astronomers craft “dust maps” based on 
knowledge of the local ISM, extinction laws, 
etc...

Dust maps undo the dimming of observed 
stars, but they don’t give insight into missing 
stars.

We note three key insights:

1. Only f(x,v) satisfies the CBE
2. Dust bias factorizable into 𝛜(x), a 

position-dependent “dust efficiency”
3. Velocity dependence of terms breaks 

degeneracy between 𝚽(x) and 𝛜(x)

Can we undo the effect of dust?
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Credit: Lallement et al. 2019 A&A 625, A135
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1. Only f(x,v) satisfies the CBE

Credit: Lallement et al. 2019 A&A 625, A135
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Vulpecula Rift

1. Only f(x,v) satisfies the CBE
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Astronomers craft “dust maps” based on 
knowledge of the local ISM, extinction laws, 
etc...

Dust maps undo the dimming of observed 
stars, but they don’t give insight into missing 
stars.

We note three key insights:

1. Only f(x,v) satisfies the CBE
2. Dust bias factorizable into 𝛜(x), a 

position-dependent “dust efficiency”
3. Velocity dependence of terms breaks 

degeneracy between 𝚽(x) and 𝛜(x)

Can we undo the effect of dust?
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2. Dust bias factorizable into 𝛜(x), a 
position-dependent “dust efficiency”

(up to normalization)

Credit: Lallement et al. 2019 A&A 625, A135
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Astronomers craft “dust maps” based on 
knowledge of the local ISM, extinction laws, 
etc...

Dust maps undo the dimming of observed 
stars, but they don’t give insight into missing 
stars.

We note three key insights:

1. Only f(x,v) satisfies the CBE
2. Dust bias factorizable into 𝛜(x), a 

position-dependent “dust efficiency”
3. Velocity dependence of terms breaks 

degeneracy between 𝚽(x) and 𝛜(x)

Can we undo the effect of dust?
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3. Velocity dependence of terms breaks 
degeneracy between 𝚽(x) and 𝛜(x)

Credit: Lallement et al. 2019 A&A 625, A135
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Solving the dust-corrected CBE
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Given fobs(x,v), we can solve the CBE for 𝚽(x) 
and 𝛜(x) simultaneously. We parameterize both 
with multi-layer perceptrons (MLPs).

𝚽(x), 𝛜(x) training steps:

- Sample (x,v) pairs from fobs(x,v)
- Compute df/dx, df/dv at (x,v)
- Minimize the MSE of the CBE as a loss

MLP architecture:

- 5x hidden linear layers, 100 wide
- GeLU activation
- Outputs of 𝛜(x) are clamped within (0,1)

xi ~ n(x) vj
i ~ p(v|xi)
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Unbiased Phase Space Density
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Gaia DR3 MAF model of fobs
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Unbiased Phase Space Density
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Gaia DR3 MAF model of fobs

Corrected f
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Unbiased Phase Space Density
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Gaia DR3 MAF model of fobs

Corrected f

Some wrinkles 
visible at edges
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Validating 𝛜
How do we verify that 𝛜 is working?

Construct an effective 𝛜 based on a 3D dust 
map (Lallement 20221 i.e. L22).
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Validating 𝛜
How do we verify that 𝛜 is working?

Construct an effective 𝛜 based on a 3D dust 
map (Lallement 20221 i.e. L22).

Steps:

- Brighten observed but dimmed stars
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Validating 𝛜
How do we verify that 𝛜 is working?

Construct an effective 𝛜 based on a 3D dust 
map (Lallement 20221 i.e. L22).

Steps:

- Brighten observed but dimmed stars
- Repeat magnitude cut for completeness

25

Brighten

Magnitude
cut

Magnitude
cut

Original Brightened



Eric Putney | Rutgers, the State University of New Jersey | DPF-Pheno 2024 | May 16, 2024

Validating 𝛜
How do we verify that 𝛜 is working?

Construct an effective 𝛜 based on a 3D dust 
map (Lallement 20221 i.e. L22).

Steps:

- Brighten observed but dimmed stars
- Repeat magnitude cut for completeness
- Compute ratio of number densities: 𝛜L22
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Validating 𝛜
How do we verify that 𝛜 is working?

Construct an effective 𝛜 based on a 3D dust 
map (Lallement 20221 i.e. L22).

Steps:

- Brighten observed but dimmed stars
- Repeat magnitude cut for completeness
- Compute ratio of number densities: 𝛜L22

Limitations:

- Limited to nearby, totally complete 
regions of space i.e. within ~2.5 kpc

- 𝛜 captures dust and over-smoothing, 
should look like a blurred version of 𝛜L22
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Comparing 𝛜 and 𝛜L22

𝛜 and 𝛜L22 consistent over the comparison 
volume!

- We are estimating the most dust-dense 
regions accurately

28

𝛜L22(x)𝛜(x)
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Comparing 𝛜 and 𝛜L22

𝛜 and 𝛜L22 consistent over the comparison 
volume!

- We are estimating the most dust-dense 
regions accurately

- Dust cloud complexes are reproduced 
when projected on the sky
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Comparing 𝛜 and 𝛜L22

𝛜 and 𝛜L22 consistent over the comparison 
volume!

- We are estimating the most dust-dense 
regions accurately

- Dust cloud complexes are reproduced 
when projected on the sky

- Extinction profiles consistent along dusty 
lines of sight
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𝛜L22(x)𝛜(x)

𝛜L22(x)𝛜(x)

DR3 w/ labeled clouds
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Dust-Corrected Potential

We compare Φ(x) to the standard benchmark Milky 
Way potential MWPotential20142.

- We recover a smoother potential in previously 
dust-obscured regions of the disk
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Solid: CBE-derived Φ(x)
Dashed: MWPotential2014 Φ(x) 



Eric Putney | Rutgers, the State University of New Jersey | DPF-Pheno 2024 | May 16, 2024

Dust-Corrected Potential

We compare Φ(x) to the standard benchmark Milky 
Way potential MWPotential20142.

- We recover a smoother potential in previously 
dust-obscured regions of the disk

- Deviations from the standard axisymmetric 
picture are apparent
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Acceleration & Mass Density

Acceleration improvements:

- Parameterizing Φ(x) with an MLP smooths 
a(x) significantly

- Dust-correction stabilizes a(x) in dusty 
regions of the sky. Can access the disk!
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<- dust clouds thicken
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Acceleration & Mass Density

Acceleration improvements:

- Parameterizing Φ(x) with an MLP smooths 
a(x) significantly

- Dust-correction stabilizes a(x) in dusty 
regions of the sky. Can access the disk!

Finally, we estimate the local dust-corrected mass 
density field ρ(x).

- Similar smoothing benefit, estimate is stable 
in the disk

- Exhibits noisy oscillations in some regions
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Disk Halo -><- Halo

<- dust clouds thicken

GC
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Acceleration & Mass Density

Acceleration improvements:

- Parameterizing Φ(x) with an MLP smooths 
a(x) significantly

- Dust-correction stabilizes a(x) in dusty 
regions of the sky. Can access the disk!

Finally, we estimate the local dust-corrected mass 
density field ρ(x).

- Similar smoothing benefit, estimate is stable 
in the disk

- Exhibits noisy oscillations in some regions
- Residual map of dark matter coming into 

focus…
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dark matter!

Disk Halo -><- Halo

<- dust clouds thicken

GC
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We have developed a data-driven technique for 
removing dust extinction bias from kinematic 
phase space.

Our estimate of this bias is consistent with and 
builds upon existing 3D dust maps.

Used the unbiased f(x,v) to map the local 
potential. Closer to a fully data-driven map of 
dark matter in the Milky Way.

Summary

Lim et al. (2023) Lim et al. (2023)
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Thank you!

DALL-E: “A visually striking image that represents the phrase 
“dark matter to dark matter, dust to dust” symbolizing the 
removal of interstellar dust to reveal a spiral galaxy”

arXiv:240X.XXXXX
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Additional Slides

38



Eric Putney | Rutgers, the State University of New Jersey | DPF-Pheno 2024 | May 16, 2024

Flying through the clouds (legible edition)

39

- Consistent profiles for most clouds
- Overshoot distance to some clouds
- We miss fainter clouds
- Dust map error bars are very tight!
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Radial Profile of the Milky Way’s Dark Matter Halo

Can place loose constraints on the MW halo. Radial profile consistent with NFW (β=1) when 
fit to a generalized NFW (gNFW) profile. 
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Lim, EP, Buckley, 
Shih (2023)

Lim, EP, Buckley, Shih (2023)
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Phase mixing & equilibrium
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t = 0 t = 3 t = 10 t = 20

t = 70 t = 170 t = 440 t = 2000
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Gaia Dataset: The Red Clump (and friends)

Dim, can only see nearby stars

Bright, always* observed if 
within d < 4 kpc

Lim, EP, Buckley, Shih (2023)
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Jeans Equations
Moments of the CBE yield the Jeans equations:

Key notes:

- Axisymmetry implicitly assumed when aϕ = 0.
- Must model each velocity moment and number density
- Many terms are noisy. Calculation of ρ can involve high 

order derivatives of fits to noisy data.
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Lim, EP, Buckley, Shih (2023)
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Gaia Measurement Errors
Astrometric errors and propagated from ICRS to 
Cartesian coordinates.

Primary uncertainties for stars are parallax and 
radial velocities.

- We cut relative stars w/ relative parallax 
errors > .33
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Lim, EP, Buckley, Shih (2023)
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Normalizing Flows
Stats definition: A transformation g of a base distribution p(z) into a target distribution p(y) by a sequence 
of invertible and differentiable mappings.

Key Ideas:

● There are simple distributions p(z) that we understand.
● Our data was drawn from some unknown distribution p(y).
● Training a normalizing flow -> finding a smooth transformation g (with inverse f) between p(z) and 

p(y). g may can be a sequence of smooth and invertible transformations.
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Kobyzev et al. 2019

Maximize likelihood of data = minimizing 
negative log-likelihood of data

Chain rule lets us write the following:
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Masked Autoregressive Flows
Autoregressive model: transformation modeled as a product of conditionals. MAFs enforce 
autoregressive property by masking network connections, allowing for complex non-linear 
transformations.

© Janosh Riebesell 2021
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Main idea: The order you 
specify dimensions should not 
matter. (x,y,z vs z,y,x)

If there are correlations in the 
data, it should find them on its 
own!


