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What this talk is about

• This talk is about a specific generalization of canonical
quantum mechanics (QM) that only modifies the space over
which “phases” of energy eigenstates evolve.

• In particular, I’ll talk about the consequences it has for
interference and oscillation phenomena.
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Why consider generalizations?

• Better understanding: Relaxing the mathematical structure
and generalizing QM can give insights into the aspects that
were generalized.

• New phenomenology: It could describe physical phenomena
not present in canonical QM.

• More parameters =⇒ Wider testing: It could allow for a wider
testing of certain aspects of QM.
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Generalizations of quantum mechanics

• Canonical QM can be generalized in several distinct directions:
Non-linear Schrödinger equation, replace C with H, etc.

• QM has a rigid structure =⇒ Changes in dynamics can have
unphysical consequences.

• For example, Weinberg’s non-linear QM allows for FTL
communication!

1

• In general, new parameters that quantify the deviation from
QM should be strongly constrained.

• Our work generalizes QM through its geometric formulation.
2

1
See, however, Kaplan and Rajendran (PRD 105, 055002 (2022)) for a causal and non-linear framework.

2
This formulation was developed in Kibble (’79), Heslot (’85), Ashtekar (’97), Brody (’99) and more.
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Geometric quantum mechanics I
• Expand a state in terms of its energy eigenstates as
|ψ⟩ =

∑
n ψn |n⟩.

iℏ
∂

∂t
|ψ⟩ = H |ψ⟩ =⇒ ψn = Nn e−iωnt ,

where H |n⟩ = ℏωn |n⟩.

• Write ψn = qn + ipn. Then ψ⃗n(t) = Nn

[
cos (ωnt)

− sin (ωnt)

]
, and

dqn
dt

= ωnpn,
dpn
dt

= −ωnqn.

• These are the classical Hamilton equations for coupled
harmonic oscillators!

H =
∑
n

1

2
ωn(q

2
n + p2n).
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Geometric quantum mechanics II
• The complex inner product between |ψ⟩ =

∑
n ψn |n⟩ and

|ϕ⟩ =
∑

m ϕm |m⟩ is given by

|ψ⟩ =
∑
n

ψn |n⟩ and |ϕ⟩ =
∑
m

ϕm |m⟩

=⇒ ⟨ψ|ϕ⟩ =
(∑

n

ψ∗
n ⟨n|

)(∑
m

ϕm |m⟩
)

=
∑
n

(ψ⃗n · ϕ⃗n)︸ ︷︷ ︸
g(ψ, ϕ)

+i
∑
n

(ψ⃗n × ϕ⃗n)︸ ︷︷ ︸
ε(ψ, ϕ)

.

• So the probability amplitude is given by

|⟨ψ|ϕ⟩|2 = g(ψ, ϕ)2 + ε(ψ, ϕ)2.
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Generalization of geometric quantum mechanics

A generalization suggests itself: Replace the dynamics of the
harmonic oscillator with a more complicated Hamiltonian.
But not every arbitrary extension will be consistent and phys-
ically sensible!

• We extend this dynamics to that of an asymmetric top, with
two conserved quantities

E =
q21
2I1

+
q22
2I2

+
q23
2I3

, and L2 = q21 + q22 + q23 .

• The equations of motion are given by

dqi
dt

= ϵijk

(
1

Ij
− 1

Ik

)
qjqk .
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Jacobi elliptic functions
• The solution of the above equations of motion is given in
terms of Jacobi elliptic functions.

q1(t) = N1 cn(Ωt, k),

q2(t) = −N2 sn(Ωt, k),

q3(t) = −N3 dn(Ωt, k).
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Consequences of the generalized dynamics
• The wavefunction is replaced by

ψ⃗n = Nn

[
cos (ωnt)

− sin (ωnt)

]
︸ ︷︷ ︸

|ψ⃗|2 = N2
n

→ Ψ⃗n = An

 cξ cn(Ωnt, k)
−κξ sn(Ωnt, k)
−sξ dn(Ωnt, k)


︸ ︷︷ ︸

|Ψ⃗|2 = A2
n

,

where cξ = cos ξ, sξ = sin ξ, κξ =
√
c2ξ + k2s2ξ , and

0 ≤ k < 1 and −π
2 ≤ ξ ≤ π

2 are the deformation parameters.

• When k = ξ = 0, Ψ⃗n → ψ⃗n and the canonical QM limit is
recovered.

• The inner product is generalized to

|⟨Ψ|Φ⟩|2 = (Ψ⃗n · Φ⃗n)
2 + (Ψ⃗n × Φ⃗n) · (Ψ⃗n × Φ⃗n).
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“Phase” space of generalized quantum mechanics

The parameters k ∼ eccentricity and ξ ∼ size.

Figure: The colored lines in each figure indicate ξ = 0 (Black), ξ = π/8 (Blue), ξ = π/4 (Orange), ξ = 3π/8
(Green), and ξ = π/2 (Red). When ξ = 0, the trajectory always follows the equator regardless of the value of k.
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Neutrino oscillation probability
• Flavor eigenstates of neutrinos, |α⟩ and |β⟩, are

superpositions of their mass eigenstates, |1⟩ and |2⟩.

|α⟩ = cos θ |1⟩ + sin θ |2⟩
|β⟩ = − sin θ |1⟩ + cos θ |2⟩

• This causes the phenomena of interference and oscillation.

P(α→ β) = sin2 2θ sin2
(
∆m2L

4E

)
.

In the current generalization upto O(k2),

PG (α→ β) =

(
c2ξ +

k2

2
s2ξ

)
sin2 2θ sin2

(
∆m2L

4E

)
.

• Note that for k = 0, ξ = 0, PG → P.

• For k = 0, ξ =
π

2
, PG (α→ β) = 0, a classical behaviour!
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Legget-Garg inequality: A measure of interference

• Consider a dichotomic observable Q(t) that can only take on
values ±1.

• Then, for classical theories

K3 := ⟨Q(t0)Q(t1)⟩+ ⟨Q(t1)Q(t2)⟩ − ⟨Q(t0)Q(t2)⟩ ≤ 1.

• Quantum mechanics violates this Legget-Garg
3
inequality

(K3 > 1) because of interference. (Contrast with Bell ineq.)

3
A. J. Leggett and A. Garg PRL. 54, 857
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Testing LG with neutrino oscillations

• Let Q = +1 if a neutrino is found in flavor α and Q = −1 if
in β. Then,

⟨QiQj⟩ = 2Pαα(ti , tj)− 1

• Consequently,

K3 = 2 {Pαα(t0, t1) + Pαα(t1, t2)− Pαα(t0, t2)} − 1.
4

• LG quantifies interference. A theory that predicts a different
interference pattern than canonical QM will give us a different
value of K3.

4
Also see D. S. Chattopadhyay and A Dighe (arXiv:2304.02475), where a different parameter is proposed as a
measure of “quantumness”.
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Quantum to classical transition

Figure: K3 for different values of ξ for k = 0. Note that since t2 > t1, only the corresponding regions should be
considered. LG inequality is violated for the pyramid regions above the plane K3 = 1
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Summary

• The foundations of quantum mechanics can be confronted
with experiments.

• Generalizing QM is one way to do it since it can help test old
assumptions and provide new phenomenology.

• Such an exercise could give us a single framework
encompassing classical theory, quantum theory, and possibly
physics beyond QM.

• Neutrinos could potentially help us probe these issues
experimentally.
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Backup slide I (Atmospheric neutrino bounds)
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Backup slide II (Bounds from B0 − B
0
oscillation)

17 / 20



Backup slide III (Nambu classical dynamics)
• The time evolution of a quantity f is given by:

df

dt
= {f ,H} = εij

∂f

∂qi

∂H

∂pj
.

• For a harmonic oscillator, H = ω
(
p2

2 + q2

2

)
, dp

dt = −ωq.

• For a system with two conserved quantities H1 and H2, an
observable f evolves as:

df

dt
= {f ,H1,H2} = εijk

∂f

∂qi

∂H1

∂qj

∂H2

∂qk
.

• In a free asymmetric top,

H1 = E =
L21
2I1

+
L22
2I2

+
L23
2I3

, H2 =
L2

2
=

1

2

(
L21 + L22 + L23

)
are conserved.
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Backup slide IV (“Deformation” of the interference
formula)

• For two complex numbers ψ1 = A1 e
iθ1 := A1

[
cos θ1
sin θ1

]
and

ψ2 = A2 e
iθ2 := A2

[
cos θ2
sin θ2

]
,

|ψ1 + ψ2|2 = A2
1 + A2

2 + 2A1A2 cos (θ1 − θ2).

• If we define “numbers” with a generalized phase[
cos θ
sin θ

]
→

cξ cn(θ, k)κξ sn(θ, k)
sξ dn(θ, k)


so that

|Ψ1+Ψ2|2 = A2
1+A2

2+2A1A2

(
cos θ1 cos θ2+f (ξ, k) sin θ1 sin θ2

)
,

where −1 ≤ f (ξ, k) ≤ 1.
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A rose by any other name
(Neutrino oscillation = Double slit experiment)

A

time

β1

α1

B

C

D

β2

α2

P(α,α)(A → D) = |α1α2 + β1β2|2

= |α1|2|α2|2︸ ︷︷ ︸
PACD

+ |β1|2 |β2|2︸ ︷︷ ︸
PABD

+2Re(α∗
1α

∗
2 β1β2)︸ ︷︷ ︸

I2(α,β)

.

20 / 20


