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What this talk is about

® This talk is about a specific generalization of canonical
quantum mechanics (QM) that only modifies the space over
which “phases” of energy eigenstates evolve.

® |n particular, I'll talk about the consequences it has for
interference and oscillation phenomena.
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Why consider generalizations?

® Better understanding: Relaxing the mathematical structure
and generalizing QM can give insights into the aspects that
were generalized.

® New phenomenology: It could describe physical phenomena
not present in canonical QM.

® More parameters = Wider testing: It could allow for a wider
testing of certain aspects of QM.
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Generalizations of quantum mechanics

® Canonical QM can be generalized in several distinct directions:
Non-linear Schrodinger equation, replace C with H, etc.

® QM has a rigid structure = Changes in dynamics can have
unphysical consequences.

® For example, Weinberg's non-linear QM allows for FTL
. . 1
communication!

® |n general, new parameters that quantify the deviation from
QM should be strongly constrained.

® QOur work generalizes QM through its geometric formulation.”

1
See, however, Kaplan and Rajendran (PRD 105, 055002 (2022)) for a causal and non-linear framework.
2
This formulation was developed in Kibble ('79), Heslot ('85), Ashtekar ('97), Brody ('99) and more.
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Geometric quantum mechanics |

® Expand a state in terms of its energy eigenstates as

) =32, ¥n|n).
. 8 _ _ —iwnpt
iho o [0) = HIv) = tn = Np e,

where H |n) = hwp |n).

cos (wnt)

* Write ¢, = qn + ipn. Then 9,(t) = N, [—sin (wnt)

},and

ddn _ dpn _
p nPn, dt ndn-

® These are the classical Hamilton equations for coupled
harmonic oscillators!

1
H=2_ Swalas+ph).
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Geometric quantum mechanics |l

® The complex inner product between [)) = )" 1, |n) and
|¢) =, dm|m) is given by

_ Zz/;,,]n> and |¢) = Em:qﬁm!nﬁ

w16 = (S w3 ) (S o)

:Zn: U - &) +/Zn:n(7¢7n><$n)-
g(¥,9) (v, ¢)

® So the probability amplitude is given by

[(]6) 2 = g1, 9) + (¥, §)%.
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Generalization of geometric quantum mechanics

A generalization suggests itself: Replace the dynamics of the
harmonic oscillator with a more complicated Hamiltonian.

But not every arbitrary extension will be consistent and phys-
ically sensible!

® We extend this dynamics to that of an asymmetric top, with
two conserved quantities

2 2 2
a1 a9z a3 2 2 2 2
= =+ = 4+ = dLc = )
ol o T Gt ata

® The equations of motion are given by
dq,- 1 1
b L e N T, T
dt ijk IJ Ik q;qk
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Jacobi elliptic functions

® The solution of the above equations of motion is given in
terms of Jacobi elliptic functions.

qi(t) = Nyen(Qt, k),
g2(t) = —Npsn(Qt, k),
g3(t) = —Ns dn(Qt, k).
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Consequences of the generalized dynamics
® The wavefunction is replaced by
ce en(Qqt, k)

- cos (wpt -
Yn = Ny |:—Sin ((Z:) t)):| - Vv, = A, —k¢ Sn(Qnt, k) s
i —S¢ dn(Q,t, k)

b2 — N2 ~
[0f2 = N FR

where ¢¢ = cos¢, s¢ =siné, kg = /¢ + k2sZ, and
0<k<1land —5 <& < 7 are the deformation parameters.

® When k=¢ =0, \I!,, — 1;,, and the canonical QM limit is
recovered.

® The inner product is generalized to

—

(W[D)2 = (W, B,)2 + (W, x &) - (W, x By).
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“Phase” space of generalized quantum mechanics

The parameters k ~ eccentricity and &£ ~ size.

Figure: The colored lines in each figure indicate £ = 0 (Black), £ = 7 /8 (Blue), £ = 7 /4 (Orange), £ = 37/8
(Green), and £ = /2 (Red). When & = 0, the trajectory always follows the equator regardless of the value of k.
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Neutrino oscillation probability
® Flavor eigenstates of neutrinos, |«) and |3), are
superpositions of their mass eigenstates, |1) and |2).
la) = cosf|1) + sin@|2)
|B) = —sin@|1) + cosf|2)
® This causes the phenomena of interference and oscillation.

Am’L

4E )’

P(a — ) = sin® 20 sin? (
In the current generalization upto O(k?),

k2
Ps(a — B) = <c52 + sf) sin2 26 sin? <

2

Am?L
4E )

® Note that for k=0,£ =0, Pg — P.

® For k=0,¢ ==, Pg(aw— ) =0, a classical behaviour!

™
5
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Legget-Garg inequality: A measure of interference

¢ Consider a dichotomic observable Q(t) that can only take on
values £1.

® Then, for classical theories

Kz == (Q(t0) Q(t1)) + (Q(t1) Q(t2)) — (Q(t0) Q(t2)) < 1.

® Quantum mechanics violates this Legget—Garg3 inequality
(K3 > 1) because of interference. (Contrast with Bell ineq.)

3
A. J. Leggett and A. Garg PRL. 54, 857
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Testing LG with neutrino oscillations

® et @ = +1 if a neutrino is found in flavor & and Q@ = —1 if
in 3. Then,
<QIQ_]> = 2Pao¢(tia t:]) -1

e Consequently,

K3 = 2{Paa(t07 tl) + Poaoz(tla t2) - Paa(t07 t2)} - 1‘4

® | G quantifies interference. A theory that predicts a different
interference pattern than canonical QM will give us a different
value of Ks.

4
Also see D. S. Chattopadhyay and A Dighe (arXiv:2304.02475), where a different parameter is proposed as a
measure of “quantumness”.
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Quantum to classical transition

Figure: K3 for different values of & for k = 0. Note that since t > tj, only the corresponding regions should be
considered. LG inequality is violated for the pyramid regions above the plane K3 =1
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Summary

The foundations of quantum mechanics can be confronted
with experiments.

Generalizing QM is one way to do it since it can help test old
assumptions and provide new phenomenology.

Such an exercise could give us a single framework
encompassing classical theory, quantum theory, and possibly
physics beyond QM.

Neutrinos could potentially help us probe these issues
experimentally.
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Backup slide | (Atmospheric neutrino bounds)
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Backup slide Il (Bounds from BY — B’ oscillation)
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Backup slide 11l (Nambu classical dynamics)
The time evolution of a quantity f is given by:

df of OH
— ={f H=¢;;j——.
dt {f, H} 6'laq,' 8pj
For a harmonic oscillator, H = w (%2 + %2> , % = —wq.

For a system with two conserved quantities H; and H», an
observable f evolves as:

df Of OHy OH-
f,Hy, H i
= {f, Hi, H2} = E_]kaql g Dar

In a free asymmetric top,

2 12 12 2 1
! 2/1+2/2+2/3’ 27 2( + 15+ L3)

are conserved.
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Backup slide IV (“Deformation” of the interference
formula)

e For two complex numbers 1); = Aj e/ := A4 [cos 91} and

sin 6
cos 92]

_ i0y ._
Y2 = Ape: A2[sin92

i1 + o|> = A2 + A3 + 2 A1 Az cos (61 — 6-).

® |f we define “numbers” with a generalized phase

s ce en(6, k)
sing| 7 |"e sn(, k)
S¢ dn(9, k)

so that
(W10, [2 = A24 4242 A1A2(cos 01 cos Ba+F (€, k) sin 6y sin 92),

where —1 < f(&, k) < 1.
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A rose by any other name
(Neutrino oscillation = Double slit experiment)

time
s

f1 B2

e

e
e

a1 o (0%)
C
'D(a,a)(A - D) = ‘a1a2 + /6162|2
= |a1|?| ol + |B1]? | B2]? + 2 Re(afad B132) -

-~

Pacp Pasp h(e,B)
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