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Migdal, 1939

Dolan, Kahlhoefer, McCabe, 17’

Light dark matter may induce nuclear recoils below the experimental threshold,
but leaving a detectable ionization signal via the Migdal effect
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Direct detection of dark matter

× 1: Ruled out by several experiments

× 2: Dark matter signal masked by atmospheric/solar neutrinos,
but reachable in the near future

✓ 3: Unexplored region, hard to reach in the near future
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Uncertainties in dark matter direct detection
In reality, these limits are subject to a couple of theoretical assumptions

? The dark matter velocity distribution on Earth follows a
Maxwell-Boltzmann

? The dark matter-nucleus interaction is given by a coherent operator, and
the dark matter couples equally to neutrons and protons

Herrera, Rappelt, 24’
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Relaxing these assumptions relaxes the limits... 4 / 15



Light dark matter
• Phenomenologically viable, although neglected in "traditional" WIMP

models → Lee-Weinberg-Hut bound.

• However, light scalar particles can account for thermal dark matter via
exchange of new fermions and light bosons (Boehm, Fayet, 03’)

• Asymmetric dark matter: E.g 3 → 2 processes in the dark sector yield
MeV thermal dark matter (Hochberg, Kuflik, Volansky, Wacker, 14’)

• Dark matter may also be produced non-thermally, freezing-in instead
of freezing-out

Hall, Jedamzik, March-Russell, West ’19 Jaeckel ’13
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https://indico.cern.ch/event/394659/contributions/943994/attachments/790192/1083104/Pradler.2015.pdf


Direct detection of light dark matter through electron recoils
SENSEI, 23’

Figueroa, Herrera, Ochoa, 24’

• Light dark matter may scatter off electrons in the atom directly

• Current experiments are orders of magnitude less stringent to
electron recoils than to nuclear recoils

• Next generation experiments (XLZD, OSCURA) will be able to
probe motivated models, but we are still far from that 6 / 15



Direct detection of high-speed light dark matter

Bringmann, Pospelov, 19’ Herrera, Ibarra, 21’
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• A fraction of the dark matter flux on Earth may have larger
velocities than the escape velocity of the Milky Way

→ Extended sensitivity to low-mass dark matter

• E.g: Cosmic-ray boosted dark matter, non-galactic dark
matter, Boosted dark matter from annihilations/decays... 7 / 15



Indirect bounds on light dark matter
Herrera, Murase, 23’
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• Cosmological and astrophysical observables constrain dark matter scattering
with baryons

• Strongest bounds arise from cosmic-ray cooling in Active Galactic Nuclei,
cosmic-ray boosted dark matter at Super-Kamiokande, and BBN 8 / 15



All these approaches constrain light dark matter with relatively large
cross section, well above the current sensitivity of direct detection

experiments at the GeV scale

They are subject to astrophysical/cosmological uncertainties, or they
only probe dark matter coupling to electrons

Alternative to constraint light dark matter with weak cross sections?

Make use of the Migdal effect
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The Migdal effect in dark matter direct detection
Ibe, Nakano, Shoji, Suzuki, 17’ Baxter, Kahn, Krnajic, 17’

• The electromagnetic signal occurs at larger energy than the
nuclear recoil signal

• Current experiments probe some thermal light dark matter
models

Where is the neutrino floor in the parameter space of the Migdal
(or electron recoil) dark matter signal?
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Herrera, 23’
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• The Migdal signal from neutrinos can overcome the nuclear recoil
signal and the electron scattering signal at certain energies
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Herrera, 23’
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• The neutrino floor is ∼ 4 orders of magnitude away from current
sensitivity to the Migdal effect from light dark matter

• The Migdal ionization signal might be detectable with 5 yr exposures
at liquid xenon experiments and S2-like threshold and background

• However, this relies on being able to separate the nuclear recoil and
electron ionization signal at energies of 0.1 − 1 keV
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Migdal effect from neutrino BSM interactions
Herrera, 23’
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Migdal eect from CEνNs

• The anapole moment scattering rate has the same shape as the weak rate

• The magnetic moment interaction has an ionization rate with distinct shape,
due to the enhancement of the cross section at small neutrino energy

• For new light mediators, the dominant rate arises from the 𝑝𝑝 chain, while for
heavy mediators the 8𝐵 dominates, which smoothes out the peaks in the
spectrum 13 / 15



A peak in the spectrum at ∼ 0.1 keV
Herrera, 23’
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CEνNs in the Standard Model

• New physics can induce a distinct peak in the ionization spectrum around 0.1
keV, arising from the ionization of 𝑛 = 4 electrons by 𝑝𝑝 neutrinos, which is
absent in the weak interaction spectrum

• It can be hard to discriminate among different models in most cases
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Conclusions

• There is a neutrino floor for light dark matter searches induced by
the Migdal effect from solar neutrinos

• The Migdal ionization signal from neutrinos can dominate over
the nuclear recoil and electron scattering signal at certain
energies

• We propose to search for peaks in the ionization spectrum of
liquid xenon around ∼ 0.1 keV, a clean signature that can provide
hints of new physics from both dark matter and neutrinos
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Thanks for your attention
gonzaloherrera@vt.edu
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