

Generalising flavoured potentials and their minima

APS-DPF Pheno 2024 University of Pittsburgh, PA USA

Ming-Shau Liu | University of Cambridge based on work with J Talbert (LANL), I Varzielas (CFTP), A Sengupta (SUNY)

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

If we can reduce the number of free parameters in SM that would be great!

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

SM
$$\Lambda_{SM}$$

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

UV Flavour
$$\Lambda_{f}$$
SM

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

UV GUT
$$\Lambda_{GUT}$$

UV Flavour Λ_{f}
SM Λ_{SM}

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

 \rightarrow Flavon(s) vev break \mathscr{G}_f on UV scale and recover mass/mixing hierarchy

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

 \rightarrow Flavon(s) vev break \mathscr{G}_f on UV scale and recover mass/mixing hierarchy

→ e.g., Continuous $\mathscr{G}_f = U(1)$ [Froggat-Nielsen 1979], SU(3) [King-Ross 2001], SO(3) [Reig-Valle-Wilczek 2018]

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

 \rightarrow Flavon(s) vev break \mathscr{G}_f on UV scale and recover mass/mixing hierarchy

→ e.g., Continuous $\mathscr{G}_f = U(1)$ [Froggat-Nielsen 1979], SU(3) [King-Ross 2001], SO(3) [Reig-Valle-Wilczek 2018]

 \rightarrow Discrete & non-Abelian $\mathscr{G}_f = S_4, A_4$ [Altarelli-Feruglio 2006]

What are flavour puzzles?

 \rightarrow Explain the pattern of fermionic mass, mixing, CP violation...

Popular solutions introduce BSM \mathscr{G}_f flavour symmetry at $\Lambda_f \gg \Lambda_{SM}$ high energy

 \rightarrow Flavon(s) vev break \mathscr{G}_f on UV scale and recover mass/mixing hierarchy

→ e.g., Continuous $\mathscr{G}_f = U(1)$ [Froggat-Nielsen 1979], SU(3) [King-Ross 2001], SO(3) [Reig-Valle-Wilczek 2018]

 \rightarrow Discrete & non-Abelian $\mathscr{G}_f = S_4, A_4$ [Altarelli-Feruglio 2006]

STEP 0 — Define
$$\mathscr{G}_f = \Delta_{27} = (Z_3 \times Z_3) \rtimes Z_3$$

STEP 1 — INGREDIENTS

BSM scalar fields **charged** by $\Delta(27)$, e.g., θ (*flavon*)

fermions **anti-charged** by $\Delta(27)$, e.g., q_i

STEP 2 – COUPLINGS

form interaction terms $\theta q_i \theta q_i$

break flavour symmetry $\theta q_i \theta q_j \rightarrow v^2 q_i q_j$,

get Yukawa terms and CHECK e.g., CKM, PMNS...

STEP 0 — Define
$$\mathscr{G}_f = \Delta_{27} = (Z_3 \times Z_3) \rtimes Z_3$$

STEP 1 — INGREDIENTS

BSM scalar fields **charged** by $\Delta(27)$, e.g., θ (*flavon*)

fermions **anti-charged** by $\Delta(27)$, e.g., q_i

STEP 2 – COUPLINGS

form interaction terms $\theta q_i \theta q_j$

break flavour symmetry $\theta q_i \theta q_j \rightarrow v^2 q_i q_j$,

get Yukawa terms and CHECK e.g., CKM, PMNS...

BUT DO THEY EXIST? $\begin{cases} \langle \theta_3 \rangle = (0,0,1) \\ \langle \theta_{123} \rangle = (1,1,-1) \\ \langle \theta_{23} \rangle = (0,1,1) \end{cases}$

STEP 0 — Define
$$\mathscr{G}_f = \Delta_{27} = (Z_3 \times Z_3) \rtimes Z_3$$

STEP 1 — INGREDIENTS

BSM scalar fields **charged** by $\Delta(27)$, e.g., θ (*flavon*)

fermions **anti-charged** by $\Delta(27)$, e.g., q_i

STEP 2 – COUPLINGS

form interaction terms $\theta q_i \theta q_j$

break flavour symmetry $\theta q_i \theta q_j \rightarrow v^2 q_i q_j$,

get Yukawa terms and CHECK e.g., CKM, PMNS...

STEP 0 — Define
$$\mathscr{G}_f = \Delta_{27} = (Z_3 \times Z_3) \rtimes Z_3$$

STEP 1 — INGREDIENTS

BSM scalar fields **charged** by $\Delta(27)$, e.g., θ (*flavon*)

fermions **anti-charged** by $\Delta(27)$, e.g., q_i

STEP 2 – COUPLINGS

form interaction terms $\theta q_i \theta q_j$

break flavour symmetry $\theta q_i \theta q_i \rightarrow v^2 q_i q_i$,

get Yukawa terms and CHECK e.g., CKM, PMNS...

UV Flavou

SM

SM

Challenges Backgrounds on Universal Texture Zero (UTZ)

What are the d = 6 contractions?

- 1. Discrete symmetries and Efficient Counting of Operators Hilbert series based [Calò, Marinissen, Rahn 2023]
- 2. Enumerate via the hypercharge

[new] use tree isomorphism to count degeneracy

Challenges Backgrounds on Universal Texture Zero (UTZ)

What are the d = 6 contractions?

- 1. Discrete symmetries and Efficient Counting of Operators Hilbert series based [Calò, Marinissen, Rahn 2023]
- 2. Enumerate via the hypercharge

[new] use tree isomorphism to count degeneracy

[new] How do these invariants affect the stability of the solutions?

- 1. Perturb from the renormalizable alignment, or
- 2. Find new solutions!

How many invariants are there? Hilbert Series approach to group contraction

DECO - **D**iscrete symmetries and **E**fficient **C**ounting of **O**perators [Simon Calo, Coenraad Marinissen and Rudi Rahn, 2022] Enumerates the number of terms for an effective theory for

[Lehman and Martin 2015]

- Arbitrary dimension
- Arbitrary field/symmetries
- Includes $S_4, A_4, Z_n, U(1)_R$ etc...

based on form and powered by Hilbert Series...

[new] DECO 1.1 includes $\Delta_{27} = (Z_3 \times Z_3) \rtimes Z_3$

[new] What are the invariants? Discrete non-Abelian singlet of N flavons

Given two flavons θ , θ' that are 3D fundamental representation

The singlets transform as $\mathbf{1}_{r,s} \to \omega^r \mathbf{1}_{r,s}$ or $\omega^s \mathbf{1}_{r,s}$

STEP 1 – Partition of d = 6 = 2 + 2 + 2 = 2 + 4 = 3 + 3 = 6

The partitions are the dimension of each singlets that makes up the overall singlet STEP 2 – Enumerate the triplets it takes to form that singlet

STEP 3 – Enumerate the r, s within each partition

e.g., 6 = 2 + 4 represents $\mathbf{1}_{r,s} \cdot \mathbf{1}_{r',s'} = \mathbf{1}_{r+r',s+s'}$

Need $r + r' = s + s' = 0 \mod 3 \dots$

[new] What are the invariants? Discrete non-Abelian singlet of N flavons

Given two flavons θ , θ' that are 3D fundamental representation

The singlets transform as $\mathbf{1}_{r,s} \to \omega^r \mathbf{1}_{r,s}$ or $\omega^s \mathbf{1}_{r,s}$

STEP 1 – Partition of d = 6 = 2 + 2 + 2 = 2 + 4 = 3 + 3 = 6

The partitions are the dimension of each singlets that makes up the overall singlet

STEP 2 – Enumerate the triplets it takes to form that singlet

e.g., 6 = 2 + 4 represents $\mathbf{1}_{r,s} \cdot \mathbf{1}_{r',s'} = \mathbf{1}_{r+r',s+s'}$

STEP 3 – Enumerate the r, s within each partition

How to keep track?

Need $r + r' = s + s' = 0 \mod 3$

[new] What are the invariants? What's the problem?

STEP 2 – Enumerate the triplets it takes to form that singlet

How to keep track?

How do we know we have exhausted the ways to form singlet/triplet?

e.g., to form a d = 4 singlet we can either carry out $\left[(\theta \times \theta \times \theta) \cdot \theta \right]_{r,s} \text{ or } \left[(\theta \times \theta) \cdot (\theta \times \theta) \right]_{r,s}$ it is not obvious if we exhausted all the ways to form a singlet...

What do we do?

[new] What are the invariants? The contraction graph – definition

Definition (Contraction graph). A contraction graph^[5] is a 2-coloring tree G with V vertices and E edges, where each vertex $i = 1 \dots N$ has degree e_i , so $E = \frac{1}{2} \sum_i e_i$.

- 1. The graph is 2-colouring, so no two vertices share the same colour if they are connected by an edge, *i.e.*, no $\bullet \frown \bullet$ or $\circ \frown \circ$.
- 2. The number of leaves is the dimension of the term the graph represents.
- 3. Each vertices have degree 1, 2, or 3, and are either *active* with an even degree or *inactive* with an odd degree. An active vertex is a triplet that has not been contracted.
- 4. New connections can only be made with an active vertex.
- 5. A line represents triplet multiplication and a dashed line represents singlet contraction.

To convert a contraction graph back to their symbolic form, first write down the number of fields represented by the leaf edges, then insert \times if two leaves n_1, n_2 are connected via another vertex (distance = 2), or \circ if connected by an edge (distance = 1).

[new] What are the invariants? The contraction graph – example

An example of d = 6 = 6 contraction + means triplet, - means anti-triplet

$$(\underset{+}{\theta}\times\underset{+}{\theta}\times\underset{-}{\theta})\circ(\underset{-}{\theta}\times\underset{+}{\theta}\times\underset{+}{\theta})=$$

We can convert the expression to graph and vice versa.

Each \circ comes with indices $\{r, s\}$ and \times comes with indices q = 0, 1, 2

[new] What are the invariants? The contraction graph of $d \le 6$

[new] What are the invariants? The contractions of d = 6

[new] What are the invariants? The contractions of d = 6 = 2 + 4 = 3 + 3 = 2 + 2 + 2

Examples of $\theta = (\theta_1, \theta_2, \theta_3)$ invariants associated with each partition There are 39 forms of 6 = 6 invariants, e.g., $|\theta_1|^6 + |\theta_2|^6 + |\theta_3|^6$, $\theta_1 \theta_2 \theta_3 (\theta_1^3 + \theta_2^3 + \theta_3^3)$, $(\theta_2^3 + \theta_3^3) \theta_1^3 + \theta_2^3 \theta_3^3$. There are 30 forms of 6 = 3 + 3 invariants.

There are 48 forms of 6 = 2 + 4 invariants.

There are 14 forms of 6 = 2 + 2 + 2 invariants...

[new] What are the invariants? The contractions of d = 6 = 2 + 4 = 3 + 3 = 2 + 2 + 2

Examples of $\theta = (\theta_1, \theta_2, \theta_3)$ invariants associated with each partition There are 39 forms of 6 = 6 invariants, e.g., $|\theta_1|^6 + |\theta_2|^6 + |\theta_3|^6$, $\theta_1 \theta_2 \theta_3 (\theta_1^3 + \theta_2^3 + \theta_3^3)$, $(\theta_2^3 + \theta_3^3) \theta_1^3 + \theta_2^3 \theta_3^3$.

There are 30 forms of 6 = 3 + 3 invariants.

There are 48 forms of 6 = 2 + 4 invariants.

There are 14 forms of 6 = 2 + 2 + 2 invariants...

Any of them could destabilise the alignment

 $\langle \theta_3 \rangle = (0,0,1), (1,1,1), \dots \text{ are stable minimum potential}$ when $V \supset V_{d \le 4} = m_3^2 |\theta_3^2| + \lambda_3 \theta_3^2 \theta_3^{\dagger 2}$ Introduce non-renormalisable contribution $V \supset V_6 = k_3 \left(\theta_3 \theta_3^{\dagger} \right)_{0,0} \left(\theta_3 \theta_3^{\dagger} \right)_{0,1} \left(\theta_3 \theta_3^{\dagger} \right)_{0,2}$

abs32

Most directions are either

- 1. Preserved $v \rightarrow v$
- 2. Scaled $\mathbf{v} \rightarrow a\mathbf{v}$
- 3. Destroyed

 $\langle \theta_3 \rangle = (0,0,1), (1,1,1), \dots \text{ are stable minimum potential}$ when $V \supset V_{d \le 4} = m_3^2 |\theta_3^2| + \lambda_3 \theta_3^2 \theta_3^{\dagger 2}$ Introduce non-renormalisable contribution $V \supset V_6 = k_3 \left(\theta_3 \theta_3^{\dagger} \right)_{0,0} \left(\theta_3 \theta_3^{\dagger} \right)_{0,1} \left(\theta_3 \theta_3^{\dagger} \right)_{0,2}$

Most directions are either

- 1. Preserved $v \rightarrow v$
- 2. Scaled $\mathbf{v} \rightarrow a\mathbf{v}$
- 3. Destroyed

 $\langle \theta_3 \rangle = (0,0,1), (1,1,1), \dots \text{ are stable minimum potential}$ when $V \supset V_{d \le 4} = m_3^2 |\theta_3^2| + \lambda_3 \theta_3^2 \theta_3^{\dagger 2}$ Introduce non-renormalisable contribution $V \supset V_6 = k_3 \left(\theta_3 \theta_3^{\dagger} \right)_{0,0} \left(\theta_3 \theta_3^{\dagger} \right)_{0,1} \left(\theta_3 \theta_3^{\dagger} \right)_{0,2}$

abs32

Most directions are either

- 1. Preserved $v \rightarrow v$
- 2. Scaled $\mathbf{v} \rightarrow a\mathbf{v}$
- 3. Destroyed

 $\langle \theta_3 \rangle = (0,0,1), (1,1,1), \dots \text{ are stable minimum potential}$ when $V \supset V_{d \le 4} = m_3^2 |\theta_3^2| + \lambda_3 \theta_3^2 \theta_3^{\dagger 2}$ Introduce non-renormalisable contribution $V \supset V_6 = k_3 \left(\theta_3 \theta_3^{\dagger} \right)_{0,0} \left(\theta_3 \theta_3^{\dagger} \right)_{0,1} \left(\theta_3 \theta_3^{\dagger} \right)_{0,2}$

abs32

abs31

Most directions are either

- 1. Preserved $v \rightarrow v$
- 2. Scaled $\mathbf{v} \rightarrow a\mathbf{v}$
- 3. Destroyed

We have the conditions for them!

abs31

 $\langle \theta_3 \rangle = (0,0,1), (1,1,1), \dots \text{ are stable minimum potential}$ when $V \supset V_{d \le 4} = m_3^2 |\theta_3^2| + \lambda_3 \theta_3^2 \theta_3^{\dagger 2}$ Introduce non-renormalisable contribution $V \supset V_6 = k_3 \left(\theta_3 \theta_3^{\dagger} \right)_{0,0} \left(\theta_3 \theta_3^{\dagger} \right)_{0,1} \left(\theta_3 \theta_3^{\dagger} \right)_{0,2}$

abs32

Most directions are either

- 1. Preserved $v \rightarrow v$
- 2. Scaled $\mathbf{v} \rightarrow a\mathbf{v}$
- 3. Destroyed

Most directions are either

- 1. Preserved $\mathbf{v} \rightarrow \mathbf{v}$
- 2. Scaled $\mathbf{v} \rightarrow a\mathbf{v}$
- 3. Destroyed

Minimisation of the scalar sector produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\nabla^2 V|_{V_0} = 0$

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Scaling of pure d=6 contribution to $\langle \theta_3 \rangle$

Minimisation of the scalar sector produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\left. \nabla^2 V \right|_{V_0} = 0$

 \rightarrow different minimum are present in different regions of the parameter

Fix glitchy animation

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Scaling of pure d=6 contribution to $\langle \theta_3 \rangle$

Minimisation of the scalar sector produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\nabla^2 V|_{V_0} = 0$

 \rightarrow different minimum are present in different regions of the parameter

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Fix glitchy animation

Scaling of pure d=6 contribution to $\langle \theta_3 \rangle$

Minimisation of the scalar sector produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\left. \nabla^2 V \right|_{V_0} = 0$

 \rightarrow different minimum are present in different regions of the parameter

Fix glitchy animation

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Minimisation of the scalar sector produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\left. \nabla^2 V \right|_{V_0} = 0$

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Minimisation of the scalar sector produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\left. \nabla^2 V \right|_{V_0} = 0$

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Minimisation of the scalar sector

produced minimum candidates

 \rightarrow eliminate and select candidates using minimum condition $\left. \nabla^2 V \right|_{V_0} = 0$

$$(0,0,\frac{m_{3}}{\sqrt{2\lambda_{3}}}) \rightarrow \left(0,0,\sqrt{\frac{\lambda_{3} \pm \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}}\right) \quad \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \qquad \frac{m_{3}}{\sqrt{2\lambda_{3}}} (0,1,1) \rightarrow \begin{cases} \sqrt{\frac{\lambda_{3} + \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } 0 < k_{3} \leq \frac{\lambda_{3}^{2}}{3m_{3}^{2}}, \\ \sqrt{\frac{\lambda_{3} - \sqrt{\lambda_{3}^{2} - 3k_{3}m_{3}^{2}}}{3k_{3}}} (0,1,1) & \text{min. if } k_{3} = \frac{\lambda_{3}^{2}}{3m_{3}^{2}}. \end{cases}$$

Scaling of pure d = 6 contribution to $\langle \theta_3 \rangle$

Minimisation of the scalar sector produced minimum candidates

- \rightarrow eliminate and select candidates using minimum condition $\nabla^2 V|_{V_0} = 0$
- \rightarrow different minimum are present in different regions of the parameter

The collection of available alignments changes according to k_3

Now we have $\theta_i = (\theta_{i,1}, \theta_{i,1}, \theta_{i,1}), \quad i = 3,123$

The invariants according the contraction graphs are

$$V_{\mathsf{mixed}} = k \left(\left[\theta_{123} \times_0 \theta_{123}^{\dagger} \right] \cdot \left[\theta_{123} \times_0 \theta_{123}^{\dagger} \right] \right)_{0,0} \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0} \text{ or } k \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0} \left(\theta_{123} \cdot \theta_{123}^{\dagger} \right)_{0,0}^2 \right)_{0,0} \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0}^2 \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0}^2 \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0}^2 \left(\theta_3 \times_0 \theta_3^{\dagger} \right] \cdot \left[\theta_3 \times_0 \theta_3^{\dagger} \right] \right)_{0,0} \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0}^2 \left(\theta_3 \cdot \theta_3^{\dagger} \right)_{0,0}^2$$

The task becomes minimising $V \supset V_0 = \sum_{3,123} m_i^2 |\theta_i^2| + \lambda_i \theta_i^2 \theta_i^{\dagger 2} + V_{\text{mixed}}$

The alignment of (0,0,1) and (1,1,-1) under $V_1 = m_3^2 |\theta_3|^2 + \lambda_3 \theta_3^2 \theta_3^{\dagger 2} + m_{123}^2 |\theta_{123}|^2 + \lambda_{123} \theta_{123}^2 \theta_{123}^{\dagger 2} + k(|\theta_{123}|^2 |\theta_3|^4 \text{ or } |\theta_{123}|^2 \theta_3^2 \theta_3^{\dagger 2})$ are transformed by scaling.

$$\left\langle \theta_3 \right\rangle = v_3(0,0,1) \to \overline{v}_3(0,0,1), \qquad \overline{v}_3 = \sqrt{\frac{m_3^2}{2(k|\overline{v}_{123}|^2 + \lambda_3)}}, \\ \left\langle \theta_{123} \right\rangle = v_{123}(1,1,-1) \to \overline{v}_{123}(1,1,-1), \quad \overline{v}_{123} = \sqrt{\frac{m_{123}^2 - k|\overline{v}_3|^2}{2h_{123}}},$$

and they are **STABLE** if their 6 dimensional Hessian eigenvalues > 0...

and they are **<u>STABLE</u>** if their 6 dimensional Hessian eigenvalues > 0...

$$H = \begin{pmatrix} A & 0 & 0 & 0 & 0 & 0 \\ 0 & A & 0 & 0 & 0 & 0 \\ 0 & 0 & D & B & B & -B \\ 0 & 0 & B & C & 0 & 0 \\ 0 & 0 & -B & 0 & C & 0 \\ 0 & 0 & -B & 0 & 0 & C \end{pmatrix}, \quad \begin{cases} A = \frac{6k|\overline{v}_{3}|^{2} \left(m_{123}^{2} - k|\overline{v}_{3}|^{4}\right)}{h_{123}} - 2m_{3}^{2}, \\ B = \frac{4\sqrt{2}k|\overline{v}_{3}|^{3} \sqrt{m_{123}^{2} - k|\overline{v}_{3}|^{4}}}{\sqrt{h_{123}}} \\ C = 6\left(m_{123}^{2} - k|\overline{v}_{3}|^{4}\right) + 2k|\overline{v}_{3}|^{4} - 2m_{123}^{2}, \\ D = 3A + 12h_{3}|\overline{v}_{3}|^{2} + 4m_{3}^{2} \end{cases}$$

and their stability regions can be categorised by their renormalisable relation

...and their stability regions can be categorised by their renormalisable relation

$$\begin{cases} h_3 < 0 \text{ and } m_3^2 < \frac{6h_{123}h_3\overline{v}_3^2 - 21k^2\overline{v}_3^6 + 9km_{123}\overline{v}_3^2}{h_{123}} & k\overline{v}_3^4 < m_{123}^2 \le 3k\overline{v}_3^4 \\ \begin{cases} h_3 \le \frac{3k^2\overline{v}_3^4 - km_{123}}{h_{123}} \text{ and } m_3^2 < \frac{6h_{123}h_3\overline{v}_3^2 - 21k^2\overline{v}_3^6 + 9km_{123}\overline{v}_3^2}{h_{123}} \\ \frac{3k^2\overline{v}_3^4 - km_{123}}{h_{123}} < h_3 < 0 \text{ and } m_3^2 < \frac{3km_{123}\overline{v}_3^2 - 3k^2\overline{v}_3^6}{h_{123}} \end{cases} & m_{123}^2 > 3k\overline{v}_3^4 \end{cases}$$

The eigenvalue >0 conditions competes

 \rightarrow jagged parameter space range

...and their stability regions can be categorised by their renormalisable relation

$$\begin{cases} h_3 < 0 \text{ and } m_3^2 < \frac{6h_{123}h_3\overline{v}_3^2 - 21k^2\overline{v}_3^6 + 9km_{123}\overline{v}_3^2}{h_{123}} & k\overline{v}_3^4 < m_{123}^2 \le 3k\overline{v}_3^4 \\ \begin{cases} h_3 \le \frac{3k^2\overline{v}_3^4 - km_{123}}{h_{123}} \text{ and } m_3^2 < \frac{6h_{123}h_3\overline{v}_3^2 - 21k^2\overline{v}_3^6 + 9km_{123}\overline{v}_3^2}{h_{123}} \\ \frac{3k^2\overline{v}_3^4 - km_{123}}{h_{123}} < h_3 < 0 \text{ and } m_3^2 < \frac{3km_{123}\overline{v}_3^2 - 3k^2\overline{v}_3^6}{h_{123}} \end{cases} & m_{123}^2 > 3k\overline{v}_3^4 \end{cases}$$

The eigenvalue >0 conditions competes

 \rightarrow jagged parameter space range

"Surely you can solve this exactly?"

...and their stability regions can be categorised by their renormalisable relation

$$\begin{cases} h_3 < 0 \text{ and } m_3^2 < \frac{6h_{123}h_3\overline{v}_3^2 - 21k^2\overline{v}_3^6 + 9km_{123}\overline{v}_3^2}{h_{123}} & k\overline{v}_3^4 < m_{123}^2 \le 3k\overline{v}_3^4 \\ \begin{cases} h_3 \le \frac{3k^2\overline{v}_3^4 - km_{123}}{h_{123}} \text{ and } m_3^2 < \frac{6h_{123}h_3\overline{v}_3^2 - 21k^2\overline{v}_3^6 + 9km_{123}\overline{v}_3^2}{h_{123}} \\ \frac{3k^2\overline{v}_3^4 - km_{123}}{h_{123}} < h_3 < 0 \text{ and } m_3^2 < \frac{3km_{123}\overline{v}_3^2 - 3k^2\overline{v}_3^6}{h_{123}} \end{cases} & m_{123}^2 > 3k\overline{v}_3^4 \end{cases}$$

The eigenvalue >0 conditions competes

 \rightarrow jagged parameter space range

"Surely you can solve this exactly?" Well.... technically yes

[new] Stability analysis $N_f = 2$ Mixed flavon case stability - complete solution

DON'T READ THESE

 $|\overline{v}_{3}|^{2} = \frac{\sqrt[3]{\sqrt{729h_{123}^{2}k^{8}m_{3}^{4} + 4\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)^{3} - 27h_{123}k^{4}m_{3}^{2}}}{3\sqrt[3]{2}k^{2}} - \frac{\sqrt[3]{2}\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)}{3k^{2}\sqrt{\sqrt{729h_{123}^{2}k^{8}m_{3}^{4} + 4\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)^{3} - 27h_{123}k^{4}m_{3}^{2}}}}$

$$\begin{split} |\nabla_{123}|^2 &= -\left(\frac{-16h_{123}^3k^3\lambda_3^3 + 27h_{123}^2k^5m_3^4 - 24h_{123}^2k^4\lambda_3^2m_{123}^2 - 12h_{123}k^5\lambda_3m_{123}^4 - 2k^6m_{123}^6}{432h_{123}^3k^6} \\ &+ \frac{3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4}{432h_{123}^3k^6}\right)^{1/3} \\ &+ (-64h_{123}^2k^2\lambda_3^2 - 64h_{123}k^3\lambda_3m_{123}^2 - 16k^4m_{123}^4)\left[48\ 2^{2/3}h_{123}k^2(-16h_{123}^3k^3\lambda_3^3 + 27h_{123}^2k^5m_3^4 - 24h_{123}^2k^4\lambda_3^2m_{123}^2 + 3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4 \\ &+ 3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4 \\ &- 12h_{123}k^5\lambda_3m_{123}^4 - 2k^6m_{123}^6\right)^{1/3} \bigg]^{-1} + \frac{k^2m_{123}^2 - 4h_{123}k\lambda_3}{6h_{123}k^2} \end{split}$$

[new] Stability analysis $N_f = 2$ Mixed flavon case stability - complete solution

DON'T READ THESE

 $|\overline{v}_{3}|^{2} = \frac{\sqrt[3]{\sqrt{729h_{123}^{2}k^{8}m_{3}^{4} + 4\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)^{3} - 27h_{123}k^{4}m_{3}^{2}}}{3\sqrt[3]{2}k^{2}} - \frac{\sqrt[3]{2}\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)}{3k^{2}\sqrt{\sqrt{729h_{123}^{2}k^{8}m_{3}^{4} + 4\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)^{3} - 27h_{123}k^{4}m_{3}^{2}}}}$

$$\begin{split} |\nabla_{123}|^2 &= -\left(\frac{-16h_{123}^3k^3\lambda_3^3 + 27h_{123}^2k^5m_3^4 - 24h_{123}^2k^4\lambda_3^2m_{123}^2 - 12h_{123}k^5\lambda_3m_{123}^4 - 2k^6m_{123}^6}{432h_{123}^3k^6} \\ &+ \frac{3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4}{432h_{123}^3k^6}\right)^{1/3} \\ &+ (-64h_{123}^2k^2\lambda_3^2 - 64h_{123}k^3\lambda_3m_{123}^2 - 16k^4m_{123}^4)\left[48\ 2^{2/3}h_{123}k^2(-16h_{123}^3k^3\lambda_3^3 + 27h_{123}^2k^5m_3^4 - 24h_{123}^2k^4\lambda_3^2m_{123}^2 + 3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4 \\ &+ 3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4 \\ &- 12h_{123}k^5\lambda_3m_{123}^4 - 2k^6m_{123}^6)^{1/3}\right]^{-1} + \frac{k^2m_{123}^2 - 4h_{123}k\lambda_3}{6h_{123}k^2} \end{split}$$

→ use the coupled solution *for analyticity...*

[new] Stability analysis $N_f = 2$ Mixed flavon case stability - complete solution

DON'T READ THESE

 $|\overline{v}_{3}|^{2} = \frac{\sqrt[3]{\sqrt{729h_{123}^{2}k^{8}m_{3}^{4} + 4\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)^{3}} - 27h_{123}k^{4}m_{3}^{2}}{3\sqrt[3]{2}\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)} - \frac{\sqrt[3]{2}\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)}{3k^{2}\sqrt{\sqrt{729h_{123}^{2}k^{8}m_{3}^{4} + 4\left(-6h_{123}\lambda_{3}k^{2} - 3k^{3}m_{123}^{2}\right)^{3}} - 27h_{123}k^{4}m_{3}^{2}}}$

$$\begin{split} |\overline{\mathbf{v}}_{123}|^2 &= -\left(\frac{-16h_{123}^3k^3\lambda_3^3 + 27h_{123}^2k^5m_3^4 - 24h_{123}^2k^4\lambda_3^2m_{123}^2 - 12h_{123}k^5\lambda_3m_{123}^4 - 2k^6m_{123}^6}{432h_{123}^3k^6} \\ &+ \frac{3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4}{432h_{123}^3k^6}\right)^{1/3} \\ &+ (-64h_{123}^2k^2\lambda_3^2 - 64h_{123}k^3\lambda_3m_{123}^2 - 16k^4m_{123}^4)\left[48\ 2^{2/3}h_{123}k^2(-16h_{123}^3k^3\lambda_3^3 + 27h_{123}^2k^5m_3^4 - 24h_{123}^2k^4\lambda_3^2m_{123}^2 + 3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4 \\ &+ 3\sqrt{3}\sqrt{-32h_{123}^5\lambda_3^3k^8m_3^4 + 27h_{123}^4k^{10}m_3^8 - 48h_{123}^4\lambda_3^2k^9m_{123}^2m_3^4 - 24h_{123}^3\lambda_3k^{10}m_{123}^4m_3^4 - 4h_{123}^2k^{11}m_{123}^6m_3^4 \\ &- 12h_{123}k^5\lambda_3m_{123}^4 - 2k^6m_{123}^6)^{1/3}\right]^{-1} + \frac{k^2m_{123}^2 - 4h_{123}k\lambda_3}{6h_{123}k^2} \end{split}$$

→ use the coupled solution *for analyticity...* [coming up: numeric analysis]

Outlook Results & future

Flavon alignments have limited range on the parameter space due to corrections from non-renormalizable terms

- 1. Added Δ_{27} to DECO v1.1 which allows enumeration of arbitrary d for effective theory contributions
- 2. Presented a way to list all order d contributions of Δ_{27}
- 3. Found conditions of pure and mixed d = 6 rescale renormalisable alignment in $\langle \theta_3 \rangle = (0,0,1), \langle \theta_{123} \rangle = (1,1,-1)$ and destroy directions depending on k, k_3

Outlook Results & future

Flavon alignments have limited range on the parameter space due to corrections from non-renormalizable terms

- 1. Added Δ_{27} to DECO v1.1 which allows enumeration of arbitrary d for effective theory contributions
- 2. Presented a way to list all order d contributions of Δ_{27}
- 3. Found conditions of pure and mixed d = 6 rescale renormalisable alignment in $\langle \theta_3 \rangle = (0,0,1), \langle \theta_{123} \rangle = (1,1,-1)$ and destroy directions depending on k, k_3
- 4. [future] Numeric analysis of N flavon in $d \ge 6$ and CKM & PMNS experimental matches

Backups

[backup] Stability analysis $N_f = 2$ Non-pure mixed flavon case stability - UTZ perturbation

$$V \supset V_{6} = k_{3} \left(\theta_{3} \theta_{3}^{\dagger}\right)_{0,0} \left(\theta_{3} \theta_{3}^{\dagger}\right)_{0,1} \left(\theta_{3} \theta_{3}^{\dagger}\right)_{0,2} + k_{123} \left(\theta_{123} \theta_{123}^{\dagger}\right)_{0,0} \left(\theta_{123} \theta_{123}^{\dagger}\right)_{0,1} \left(\theta_{123} \theta_{123}^{\dagger}\right)_{0,2} + k_{123} \left(\theta_{123} \cdot \theta_{123}^{\dagger}\right)_{0,0} \left(\theta_{123} \cdot \theta_{123}^{\dagger}\right)_{0,0} \left(\theta_{123} \theta_{123}^{\dagger}\right)_{0,0} \left(\theta_{123} \theta_{123}^{\dagger}\right)_{0,0} + k_{123} \left(\theta_{123} \cdot \theta_{123}^{\dagger}\right)_{0,0} \left(\theta_{123} \cdot \theta_{123}^{\dagger}\right)_{0,0} \left(\theta_{123} \theta_{123}^{\dagger$$

Pure d = 6 and mixed d = 6 for the flavon case

$$\rightarrow \langle \theta_{123} \rangle |_{UTZ} = v_{123} / \sqrt{3} (1, 1, -1) \text{ is not present} \Rightarrow \underline{\text{DESTROYED}}$$

$$\rightarrow \langle \theta_3 \rangle |_{UTZ} = v_3 (0, 0, 1) \text{ is scaled} \Rightarrow \underline{\text{PRESERVED}} \qquad _{\langle \theta_3 \rangle \to (0, 0, \sqrt{\frac{\sqrt{(\lambda_3 + k_3 v_{123}^2)^2 + 3km_3^2 - \lambda_3 - k_3 v_{123}^2}{3k}})}$$

There are ~100 invariants, **next step: categorise the combinatorics of them IMPLICATION:** If we accept a flavon models, the parameter space can be **VERY** narrow

[back up] What are the invariants? Outlook: graph isomorphism via neural network

What are limitation of this method? (M flavons in N dimension)

