

1

Search Strategy for Long-Lived Particles that Decay to ee, eµ or µµ with ATLAS

K.K. Gan The Ohio State University

On behalf of ATLAS Collaboration

May 16, 2024

- Introduction
- Long-Lived Particles Reconstruction/Selection
- Background Estimates
- Systematic Uncertainties
- Summary

Introduction

- No evidence of beyond Standard Model particles in extensive searches by ATLAS and CMS
 search for long-lived particles is of particular interest
- ATLAS searches in *pp* collisions at $\sqrt{s} = 13$ TeV
- Integrated luminosity: 140 fb⁻¹
 - update of previous analysis based on 32.8 fb⁻¹
 Phys. Lett. B 801, 135114 (2020)

Models Investigated

- Previous toy model: Drell-Yan production of Z'
 - ♦ known problem: Z' produced in qq̄ interaction would also decay predominately into qq̄ and hence excluded
 ⇒ new model with a scalar decaying to two Z'
 - Z' can decay to lepton pair or dark matter

https://scipost.org/SciPostPhys.5.4.036/pdf

Models Investigated

- Replace q̃q̄ production by g̃g with larger cross-section
 ⇒ better sensitivity
- Electroweak production is new

Challenge in Long-Lived Particle Search

- Standard ATLAS trigger + track/vertex reconstruction are designed for particles originated near *pp* collision region
 - need special triggers without using inner tracker information
 - loose enough without producing too much data
 - γ : $P_T > 160 \text{ GeV}$
 - 2γ : $P_T > 60 \text{ GeV}$
 - μ : $P_T > 60 \text{ GeV and } 0 < |\eta| < 1.05$
 - using muon chamber only
 - need to recover tracks not originated near *pp* collision region
 - Large radius tracking (LRT) + vertexing

Large Radius Tracking

 special tracking program to recover tracks with large impact parameters not found by standard tracking program
 use hits not used by the standard tracking

Reconstruction Phase	Requirement	Standard	Large Radius
Forward tracking	Min. p_T (MeV)	500	900
	Max. η	2.7	5.0
	Max. d_0 (mm)	10	300
	Max. z_0 (mm)	250	1500
Clustering	Min. unshared Si hits	6	5
	Max. shared Si modules	1	2
	Min. Si hits	7	7
	Seed extension	Combinatorial	Sequential
Back-tracking	Min. p_T (MeV)	1000	-
	Max. d_0 (mm)	100	

Allow tracks with larger impact parameters

Require less silicon hits 7

- track not allowed to have pixel hits smaller than the vertex radius
- must have nearby pixel or strip hits at larger radius
- vertex cannot be inside disabled pixel module
- no vertex with electron in pixel/strip modules or structure
- candidate tracks must match to trigger and pre-selection objects

- no standard model process can produce heavy lepton pair with displaced vertex
- two potential backgrounds
 - cosmic ray
 - two random leptons forming a displaced vertex

Cosmic Ray Veto

- one segment of cosmic ray could be reconstructed in opposite direction
 - ➡ two opposite signed track forming a detached vertex
 - two tracks separated in ϕ by π
 - two tracks of opposite η
 - ⇔ CR veto:

$$\Delta R_{\rm cos} = \sqrt{(\Delta \phi - \pi)^2 + (\Sigma \eta)^2} < 0.01$$

DPF-PHENO 2024

 estimate the background by fitting the distribution and extrapolate into the signal region

Random Crossing Background

- select one lepton from one event and combine with a lepton from a different event
- calculate probability for forming detached vertex
 - calculation is CPU intensive because probability $\sim 10^{-7}$
 - need to reconstruct several hundred million events/channel
- multiple this by number of lepton pairs in data to predict number of vertices from random crossing
- validated with high statistics without the lepton requirement

Systematic Uncertainties

- tracking and vertexing efficiency for LLP
 - use $K_s \rightarrow \pi \pi$
 - K_s can be reconstructed using standard or large radius tracking
 - number of K_s is not well simulated by MC
 - \Rightarrow normalize number of K_s found in data with standard tracking to MC
 - \Rightarrow compare number of K_s found in data with large radius tracking to MC as a function of transverse decay radius
- Other systematic uncertainties are estimated from data using Z bosons with "tag-and-probe"

- Presented search strategy for long-lived particles that decay into two oppositely charged leptons: ee, eµ, μμ
 - requiring a detached vertex in the inner tracking volume greatly suppresses the SM background
 - vertices from random crossing of tracks comprise large source of background but is small and estimated from data
 - cosmic ray background is even smaller and estimated from data
- Stay tuned...

