Dark Matter searches with Photons at the LHC

Subhojit Roy

Argonne National Laboratory

Based on JHEP04(2024)106 (arXiv:2401.08917)

In collaboration with Carlos Wagner

DPF-PHENO 2024

May 13, 2024

Outline

The nature of the DM stands out as a prominent challenge in theoretical particle physics and cosmology.

We focus to the electroweakino sector of NMSSM.

Singlino-dominated Dark Matter

Dark Matter spin-independent direct detection blind spot singlino-higgsino and singlino-bino co-annihilation scenarios

Focus to relatively unexplored parameter space of NMSSM

Radiative decay of the higgsino-like states

Electroweakino searches involving photons at the LHC

Z_3 -symmetric NMSSM

- Z_3 -symmetric NMSSM superpotential: $\mathcal{W} = \mathcal{W}_{MSSM}|_{\mu=0} + \lambda \widehat{S}\widehat{H}_u.\widehat{H}_d + \frac{\kappa}{3}\widehat{S}^3$
- Compared with MSSM, NMSSM has extra two singlet-like scalars and one additional neutralino, known as singlino
- The symmetric neutralino mass matrix has got a dimensionality of 5×5 and, in the basis $\psi^0=\{\widetilde{B},\ \widetilde{W}^0,\ \widetilde{H}_d^0,\ \widetilde{H}_u^0,\ \widetilde{S}\}$, is given by

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -\frac{g_{1}v_{d}}{\sqrt{2}} & \frac{g_{1}v_{u}}{\sqrt{2}} & 0\\ M_{2} & \frac{g_{2}v_{d}}{\sqrt{2}} & -\frac{g_{2}v_{u}}{\sqrt{2}} & 0\\ 0 & -\mu_{\text{eff}} & -\lambda v_{u}\\ 0 & -\lambda v_{d}\\ 2\kappa v_{s} \end{pmatrix}$$

 $M_1,\,M_2 o$ soft SUSY breaking masses for the $U(1)_Y$ and the $SU(2)_L$ gauginos, i.e., the bino and the wino, respectively.

 $m_{_{\widetilde{S}}}=2\kappa v_{_{S}}=2rac{\kappa}{\lambda}\mu_{\mathrm{eff}}
ightarrow \mathrm{singlino}$ mass term.

■ Charginos $(\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm})$ =mass eigenstates of $(\widetilde{W}^{\pm}, \widetilde{H}_{u/d}^{\pm})$

$$\left(\begin{array}{cc}
M_2 & \sqrt{2}m_W c_\beta \\
\sqrt{2}m_W s_\beta & \mu
\end{array}\right)$$

In order to comply with the observed relic abundance, we focus to the co-annihilation mechanism of singlino-dominated DM.

For co-annihilation to function, the mass gap between the DM and other weakly interacting particles must be minimal relatively small ==> compressed scenario at the LHC

Possibly \tilde{S} -like LSP admixtures with \tilde{B} and \tilde{H}

==> 'well-tempered' singlino-like LSP

sensitive to DM Direct detection experiments

Singlino-dominated DM direct detection blind spot (spin-independent)

[Singlino-dominated neutralino is tempered by the bino-like and higgsino-like states]

Coupling blind spot:
$$g_{_{h_{SM}\chi_{1}^{0}\chi_{1}^{0}}}\sim0$$

$$\Longrightarrow \left(m_{\chi_1^0} + \frac{g_1^2 v^2}{M_1 - m_{\chi_1^0}}\right) \frac{1}{\mu_{\text{eff}} \sin 2\beta} \simeq 1$$

Blind spot favorable criteria:

 $lacktriangleright \kappa < 0 (>0)$, when M_1 and $\mu_{ ext{eff}}$ carry same (different) sign


κ	$\mu_{ ext{eff}}$	M_1
	+	+
_	_	_
	+	_
+	_	+

This new region $\kappa < 0$ may have significant implication for explaining the discrepancy of the anomalous Muon magnetic moment (a_{μ})

A positive contribution from the Bino-smuon loop to a_{μ} if M_1 and $\mu_{ ext{eff}}$ have the same relative sign

Influence the decay patterns of neutralinos

Neutralino radiative decay

When a two-body decay mode is kinematically closed, the possibility arises for the radiative one-loop branching ratio to be higher compared to the three-body tree-level decay branching ratio.

Mass splitting parameter,
$$\varepsilon\equiv \frac{m_{\chi_2^0}}{m_{\chi_2^0}}-1$$

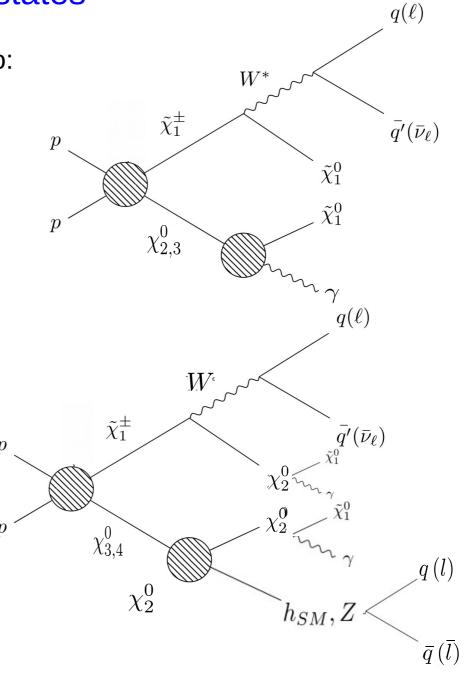
Tree-level decays are suppressed as $\Gamma(\chi_2^0 \to \chi_1^0 + f\bar{f}) \propto \varepsilon^5$, while the radiative decays are suppressed as $\Gamma(\chi_2^0 \to \chi_1^0 + \gamma) \propto \varepsilon^3$

hep-ph/9609212

Therefore, radiative decays play an important role in the compressed region.

Decay chains of Higgsino-like states

Singlino-higgsino coannihilation scenario:



Level diagrams of neutralino hierarchies with higgsino-like NLSP

Singlino-bino coannihilation scenario:

Level diagrams of neutralino hierarchies with Bino-like NLSP

$$pp \to \chi^0_{3,4}(\widetilde{H})\chi^\pm_1(\widetilde{H}) \to h_{\rm SM}/Z + W^\pm + \chi^0_2(\widetilde{B})\left[\chi^0_2 \to \gamma \chi^0_1(\widetilde{S})\right] \Rightarrow 3\ell + \geq 1\gamma + E_T \text{ or } 1\ell + 2b + \geq 1\gamma + E_T$$

Singlino-bino co-annihilation excluded scenario

λ	κ	$\tan \beta$	$\mu_{ ext{eff}} \ (ext{GeV})$	M_1 (GeV)	$\begin{pmatrix} m_{\chi_1^0}, m_{\chi_2^0} \\ (\text{GeV}) \end{pmatrix}$	$m_{\chi^0_{3,4}} $ (GeV)	$\begin{bmatrix} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ (\text{GeV}) \end{bmatrix}$
0.0964	0.0062	10.06	-418.5	66.4	-55.5, 66.0	~ 433	49, 125, 50

$BR(\chi_2^0 \to \chi_1^0 \gamma)$	$BR(\chi_3^0 \to \chi_2^0 h_{\rm SM}/Z)$	$BR(\chi_4^0 \to \chi_2^0 h_{\rm SM}/Z)$		
0.995	0.87	0.86		

$\sigma_{pp \to \chi^0_{2,3,4} \chi^{\pm}_1}$ (pb)	0.0418
CheckMATE result	Excluded
r-value	2.87
Analysis ID	$atlas_2004_10894$
Signal region ID	Cat12

Excluded by the ATLAS analysis (arXiv:2004.10894) for the search of chargino-neutralinos by studying the di-photon decay channel of the on-shell h_{SM} coming from the decay of heavier neutralino.

Although not dedicated to co-annihilation, this ATLAS analysis gains sensitivity to singlino-bino coannihilation through signal region overlap, featuring final states with leptons, jets, photons, and missing energy.

Due to large mass gap between M_1 and $\mu_{\rm eff}$, bino-like NLSP emerges with a boost.

The tail of the $m_{\gamma\gamma}$ of two photons from the process $pp \to \chi_1^\pm \chi_{3,4}^0$ broadens relatively and lies around the mass window of $h_{\rm SM}$, which is considered in the selection cuts of this ATLAS analysis.

Singlino-bino co-annihilation allowed scenario

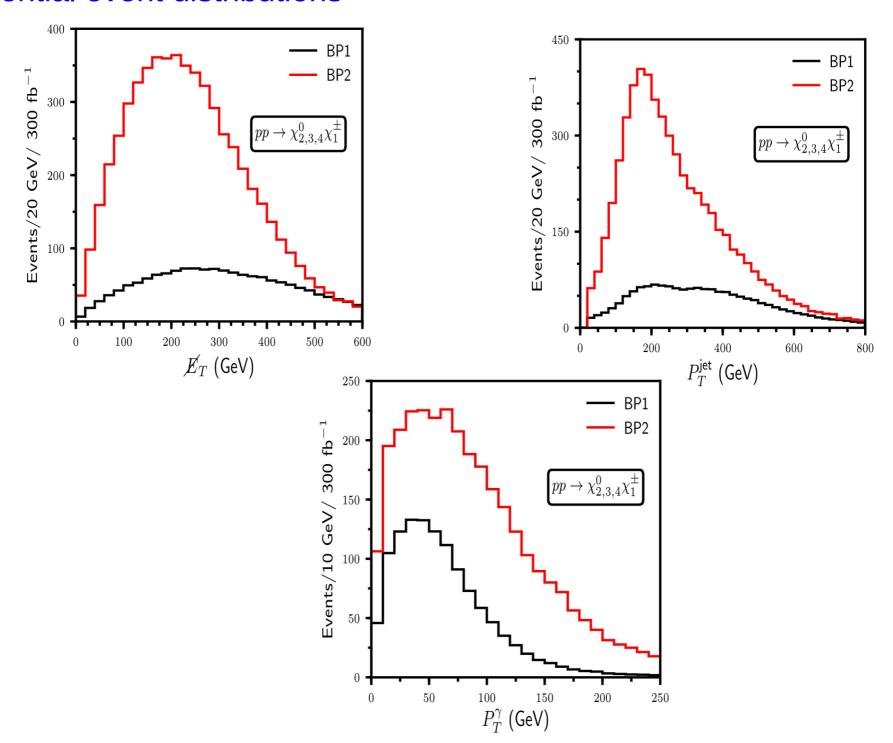
BP1

λ	κ	$\tan \beta$	$\mu_{ ext{eff}} \ ext{(GeV)}$	M_1 (GeV)	$m_{\chi_1^0}, m_{\chi_2^0} $ (GeV)	$m_{\chi^0_{3,4}}, m_{\chi^{\pm}_1} $ (GeV)	$\begin{pmatrix} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ (\text{GeV}) \end{pmatrix}$
0.0964	0.0038	7	-700	66	-56.8,65.8	~ 715	50, 125, 171

$BR(\chi_2^0 \to \chi_1^0 \gamma)$	$BR(\chi_3^0 \to \chi_2^0 h_{\rm SM}/Z)$	$BR(\chi_4^0 \to \chi_2^0 h_{\rm SM}/Z)$	$BR(\chi_1^{\pm} \to \chi_2^0 W^{\pm})$
0.88	0.88	0.87	0.87

BP2

λ	κ	$\tan \beta$	$\mu_{ ext{eff}} \ (ext{GeV})$	M_1 (GeV)	$\begin{array}{c} m_{\chi_1^0},m_{\chi_2^0} \\ (\text{GeV}) \end{array}$	$m_{\chi^0_{3,4}}, m_{\chi^{\pm}_1} \ (\text{GeV})$	$m_{h_S}, m_{h_{\rm SM}}, m_{a_S}$ (GeV)
0.2086	0.0118	6	-525	-91.6	-67.7, -92.2	~ 540	70, 125, 64


$BR(\chi_2^0 \to \chi_1^0 \gamma)$	$BR(\chi_3^0 \to \chi_2^0 h_{\rm SM}/Z)$	$BR(\chi_4^0 \to \chi_2^0 h_{\rm SM}/Z)$	$\boxed{ \text{BR}(\chi_1^{\pm} \to \chi_2^0 W^{\pm}) }$
0.72	0.58	0.57	0.57

BP1

BP2

$\sigma_{pp \to \chi^0_{2,3,4} \chi^{\pm}_1}$ (pb)	0.00425	0.01577
CheckMATE result	Allowed	Allowed
r-value	0.68	0.61
Analysis ID	atlas_2004_10894	$atlas_2004_10894$
Signal region ID	Cat12	$\mathrm{Cat}12$

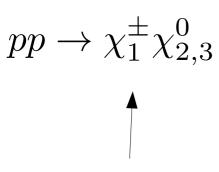
Differential event distributions

Singlino-Higgsino coannihilation scenario

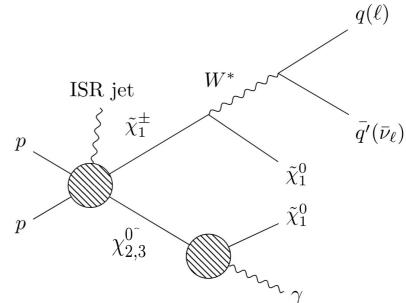
λ	κ	$\tan \beta$	μ_{eff} (GeV)	M_1 (GeV)	$m_{\chi_1^0} \ m (GeV)$	$m_{\chi^0_{2,3}}, m_{\chi^{\pm}_{1}} $ (GeV)	$m_{\chi_4^0} \ m (GeV)$	$\begin{bmatrix} m_{h_S}, m_{h_{\rm SM}}, m_{a_S} \\ (\text{GeV}) \end{bmatrix}$
0.067	0.0316	6	-307	509.2	-296	~ 312	~ 510	202, 125, 36

BP3

$\boxed{ \text{BR}(\chi_2^0 \to \chi_1^0 \gamma)}$	$BR(\chi_3^0 \to \chi_2^0 \gamma)$	$BR(\chi_1^{\pm} \to \chi_2^0 f \bar{f})$		
0.63	0.86	0.57		

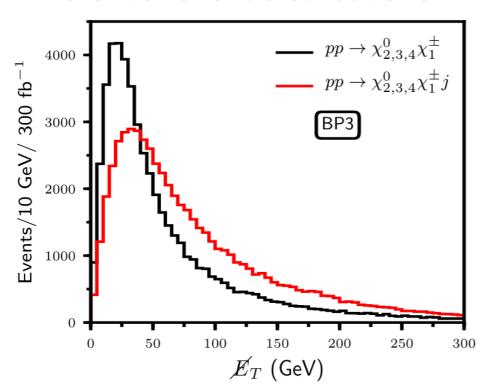

λ	κ	$\tan \beta$	$\mu_{ ext{eff}}$ (GeV)	M_1 (GeV)	$\frac{m_{\chi_1^0}}{({\rm GeV})}$	$m_{\chi^0_{2,3}}, m_{\chi^{\pm}_1}$ (GeV)	$\begin{array}{c c} m_{\chi_4^0} \\ (\text{GeV}) \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0.018	-0.0083	8.8	-198	-350	-188	~ 200	~ -355	178, 125, 83

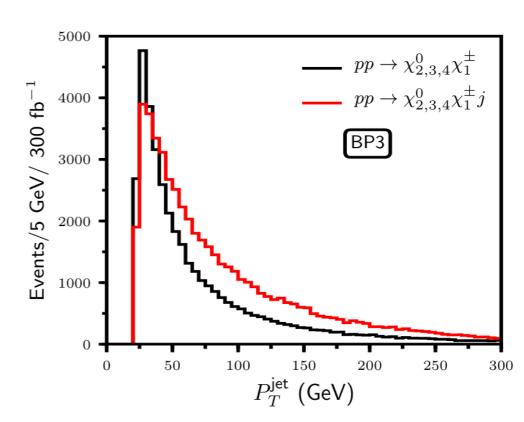
BP4


$\boxed{ \text{BR}(\chi_2^0 \to \chi_1^0 \gamma)}$	$BR(\chi_3^0 \to \chi_2^0 \gamma)$	$\boxed{ \text{BR}(\chi_1^{\pm} \to \chi_2^0 f \bar{f}) }$
073	0.92	0.80

BP4 BP3 $\sigma_{pp \to \chi^0_{2,3,4} \chi^{\pm}_1}$ (pb) 0.1400.743CheckMATE result Allowed Allowed r-value 0.07 0.12Analysis ID atlas_conf_2017_060 $atlas_conf_2020_048$ Signal region ID EM7EM09

Singlino-Higgsino coannihilation scenario with a hard ISR


 $\chi_1^\pm \, {
m and} \, \chi_{2,3}^0$ would primarily be produced at the LHC with equal and opposite P_T



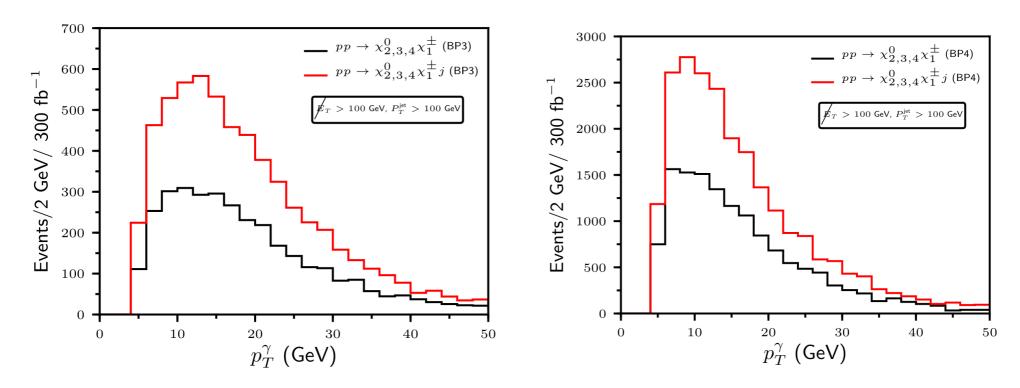
In the presence of the ISR jet, $(\chi_1^\pm\chi_{2,3}^0)$ system recoils against the ISR jet in the transverse plane.

Due to the small mass difference between the LSP and the higgsino-like states, a significant portion of the P_T of the higgsino-like χ_1^{\pm} and $\chi_{2,3}^{0}$ is transferred to the LSP, contributing to event \rlap/E_T that approximately balances with P_T of the ISR jet.

Differential event distributions

Peak of E_T distribution occurs at a relatively higher value for the process involving the ISR jet.

Additionally, a broad high E_T tail is observed for events containing one ISR jet.


This characteristic allows for more aggressive selection cuts on E_T in the analysis, effectively rejecting a significant amount of the SM backgrounds at a moderate cost in losing signal events.

Similar broader high P_T tail of the leading jet is also observed in events containing one ISR jet.

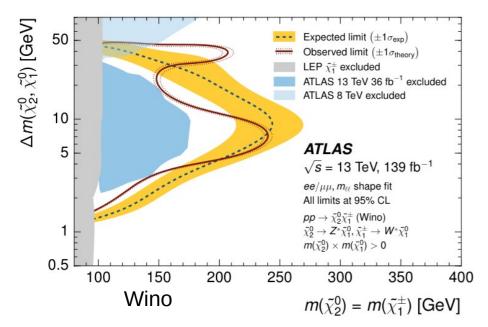
Correlation between $P_T^{
m jet}$ and E_T in events with one ISR jet,

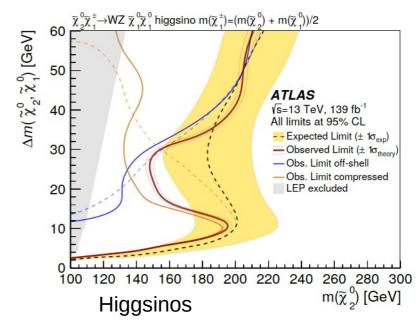
imposing a stringent cut on $E_T > 100\,{\rm GeV}$ ensures that most signal events have substantially larger $P_T^{\rm jet} \gtrsim 100\,{\rm GeV}$

Differential event distributions

The presence of a single ISR jet in the events under those specified cuts E_T , $P_T^{\rm jet} > 100\,{\rm GeV}$ leads to a notable increase in the number of events at the peak of the distribution and a broadening of the high P_T^{γ} tail.

A substantial drop in the cross-section of the process in the absence of any ISR jet under such cuts.


Distribution exhibits a peak at a slightly higher P_T^γ when the ISR jet is considered


suggesting an overall transverse boost for the photon

This can be understood from the fact that if the decaying photon from $\chi^0_{2,3}$ originated in the same direction in which $\chi^0_{2,3}$ are produced and boosted due to large P_T of the ISR jet in the event.

ATLAS and CMS reported mild excesses in electroweakino searches

arXiv:1911.12606 arXiv:2106.01676

Observed mild excess ($\sim 2\sigma$) in the (soft lepton analysis) trilepton + missing energy and dilepton + missing energy scenario for chargino-netralino masses around 200 GeV and mass gap around 20 GeV.

Recently, a paper by Agin et al. (arXiv:2311.17149) claims that the current monojet searches (arXiv: 2102.10874, 2107.13021) show excesses in a region that partially overlaps with that favored by the soft-lepton analyses.

The excess in the soft lepton channels can be explained within the context of singlino-higgsino co-annihilation scenarios discussed in our paper

Such a co-annihilation scenario can also indicate another possible detection channel involving photons.

A dedicated analysis can be done using the exiting Run 2 data of LHC

Conclusion

- A new blind spot condition $\kappa < 0$ for singlino-dominated dark matter resulting from bino and higgsino tempering.
- This blind spot condition demads same relative sign between M_1 and $\mu_{\rm eff}$, which generates a positive contribution from the Bino-smuon loop to a_μ .
- Higgsino-like states prefer radiative decay
- The compressed scenario is emerging as a promising WIMP-DM candidate, being explored through combined LHC and direct detection efforts.
- Here, we suggest a new radiative decay search for higgsino-like neutralinos in the singlino-higgsino coannihilation scenario, complementing current multilepton searches.
- For the singlino-higgsino scenario, consider a hard ISR jet with $pp o \chi_1^\pm \chi_{2,3}^0$ process Select signal region with a hard mono-jet with significant missing energy and at least one photon.
- For the case of singlino-bino scenario, photons can become relatively hard due large mass difference between higgsino-like states and bino-like NLSP.

This scenario could leads to $3\ell + \geq 1\gamma + E_T$ or $1\ell + 2b + \geq 1\gamma + E_T$ final states at the LHC.

Thank you