Dark Matter searches with Photons at the LHC

Subhojit Roy

Argonne National Laboratory

 Based on JHEP04(2024)106 (arXiv:2401.08917)

In collaboration with Carlos Wagner

DPF-PHENO 2024

May 13, 2024

Outline

The nature of the DM stands out as a prominent challenge in theoretical particle physics and cosmology.

We focus to the electroweakino sector of NMSSM.

Singlino-dominated Dark Matter

Dark Matter spin-independent direct detection blind spot singlino-higgsino and singlino-bino co-annihilation scenarios

Focus to relatively unexplored parameter space of NMSSM

Radiative decay of the higgsino-like states Electroweakino searches involving photons at the LHC

Z_3 -symmetric NMSSM

 $-Z_3$ -symmetric NMSSM superpotential: ${\cal W}={\cal W}_{\rm MSSM}|_{\mu=0}+\lambda \widehat{S}\widehat{H}_u.\widehat{H}_d+\frac{\kappa}{3}\widehat{S}^3$

■ Compared with MSSM,

NMSSM has extra two singlet-like scalars and one additional neutralino, known as singlino

The symmetric neutralino mass matrix has got a dimensionality of 5×5 and, in the basis $\psi^0 = \{ \widetilde{B}, \widetilde{W}^0, \widetilde{H}_d^0, \widetilde{H}_u^0, \widetilde{S} \}$, is given by

$$
\mathcal{M}_0 = \left(\begin{array}{cccc} M_1 & 0 & -\frac{g_1v_d}{\sqrt{2}} & \frac{g_1v_u}{\sqrt{2}} & 0 \\ & M_2 & \frac{g_2v_d}{\sqrt{2}} & -\frac{g_2v_u}{\sqrt{2}} & 0 \\ & 0 & -\mu_{\text{eff}} & -\lambda v_u \\ & & 0 & -\lambda v_d \\ & & & 2\kappa v_{_S} \end{array}\right)
$$

 $M_1, M_2 \rightarrow$ soft SUSY breaking masses for the $U(1)_Y$ and the $SU(2)_L$ gauginos, i.e., the bino and the wino, respectively.

$$
m_{\widetilde S}=2\kappa v_S=2\tfrac{\kappa}{\lambda}\mu_\mathrm{eff}\to \text{singlino mass term}.
$$

■ Charginos $(\tilde{\chi}^{\pm}_1, \tilde{\chi}^{\pm}_2)$ =mass eigenstates of $(\widetilde{W}^{\pm}, \widetilde{H}^{\pm}_{u/d})$

 $\begin{pmatrix} M_2 & \sqrt{2}m_Wc_{\beta} \ \bar{2}m_Ws_{\beta} & \mu \end{pmatrix}$

In order to comply with the observed relic abundance, we focus to the co-annihilation mechanism of singlino-dominated DM.

For co-annihilation to function, the mass gap between the DM and other weakly interacting particles must be minimal relatively small ==> compressed scenario at the LHC

Possibly \tilde{S} -like LSP admixtures with \tilde{B} and H

==> 'well-tempered' singlino-like LSP

sensitive to DM Direct detection experiments

Singlino-dominated DM direct detection blind spot (spin-independent)

[Singlino-dominated neutralino is tempered by the bino-like and higgsino-like states]

Coupling blind spot:

Blind spot favorable criteria:

$$
\blacktriangleright
$$
 $\kappa < 0(>0)$, when M_1 and $\mu_{\rm eff}$ carry same (different) sign

This new region $\kappa < 0$ may have significant implication for explaining the discrepancy of the anomalous Muon magnetic moment (a_{μ})

A positive contribution from the Bino-smuon loop to a_{μ} if M_1 and μ_{eff} have the same relative sign

Influence the decay patterns of neutralinos

Neutralino radiative decay

When a two-body decay mode is kinematically closed, the possibility arises for the radiative one-loop branching ratio to be higher compared to the three-body tree-level decay branching ratio.

Mass splitting parameter,
$$
\varepsilon \equiv \frac{m_{\chi_2^0}}{m_{\chi_2^0}} - 1
$$

Tree-level decays are suppressed as $\Gamma(\chi_2^0 \to \chi_1^0 + f \bar{f}) \propto \varepsilon^5$, while the radiative decays are suppressed as $\Gamma(\chi^0_2\rightarrow\chi^0_1+\gamma)\propto\varepsilon^3$

[hep-ph/9609212](https://arxiv.org/abs/hep-ph/9609212)

Therefore, radiative decays play an important role in the compressed region.

Decay chains of Higgsino-like states

Singlino-higgsino coannihilation scenario:

Level diagrams of neutralino hierarchies with higgsino-like NLSP

Singlino-bino coannihilation scenario:

Level diagrams of neutralino hierarchies with Bino-like NLSP

 $pp \rightarrow \chi^0_{3,4}(\widetilde{H})\chi^{\pm}_{1}(\widetilde{H}) \rightarrow h_{\text{SM}}/Z + W^{\pm} + \chi^0_{2}(\widetilde{B})\left[\chi^0_{2} \rightarrow \gamma \chi^0_{1}(\widetilde{S})\right] \Rightarrow 3\ell + \geq 1\gamma + \not{E}_T$ or $1\ell + 2b + \geq 1\gamma + \not{E}_T$

 \overline{p}

 \boldsymbol{p}

Singlino-bino co-annihilation excluded scenario

Excluded by the ATLAS analysis (arXiv:2004.10894) for the search of chargino-neutralinos by studying the di-photon decay channel of the on-shell h_{SM} coming from the decay of heavier neutralino.

Although not dedicated to co-annihilation, this ATLAS analysis gains sensitivity to singlino-bino coannihilation through signal region overlap, featuring final states with leptons, jets, photons, and missing energy.

Due to large mass gap between M_1 and μ_{eff} , bino-like NLSP emerges with a boost.

 \blacktriangleright The tail of the $m_{\gamma\gamma}$ of two photons from the process $pp\to \chi_1^\pm \chi_{3.4}^0$ broadens relatively and lies around the mass window of h_{SM} , which is considered in the selection cuts of this ATLAS analysis.

Singlino-bino co-annihilation allowed scenario

BP1

λ	κ	$\tan \beta$	μ_{eff} (GeV)	M_1 (GeV)	$m_{\chi_1^0},\,m_{\chi_2^0}$ (GeV)	$m_{\chi_{3,4}^0},\,m_{\chi_1^\pm}$ (GeV)	$m_{h_S}, m_{h_{\rm SM}}, m_{a_S}$ (GeV)
0.0964	0.0038	7	-700	66	$-56.8, 65.8$	\sim 715	50, 125, 171
			$BR(\chi_2^0 \to \chi_1^0 \gamma)$		$BR(\chi_3^0 \to \chi_2^0 h_{\rm SM}/Z)$	$BR(\chi^0_4 \rightarrow \chi^0_2 h_{\rm SM}/Z)$	$BR(\chi_1^{\pm} \to \chi_2^0 W^{\pm})$
			0.88		0.88	0.87	0.87
λ	κ	$\tan \beta$	μ_{eff} (GeV)	M_1 (GeV)	$m_{\chi_1^0},\,m_{\chi_2^0}$ (GeV)	$m_{\chi_{3,4}^0},\,m_{\chi_1^\pm}$ (GeV)	$m_{h_S},\,m_{h_{\rm SM}},\,m_{a_S}$ (GeV)
0.2086	0.0118	6	-525	-91.6	$-67.7\,,-92.2$.	$\sim\!540$	70, 125, 64
			$BR(\chi_2^0 \to \chi_1^0 \gamma)$		$BR(\chi^0_3 \to \chi^0_2 h_{\rm SM}/Z)$	$BR(\chi^0_4 \rightarrow \chi^0_2 h_{\rm SM}/Z)$	$BR(\chi_1^{\pm} \to \chi_2^0 W^{\pm})$

BP1 BI

BP2

Differential event distributions

Singlino-Higgsino coannihilation scenario

BP3 BP4

x^{\pm} (pb)	0.140	0.743					
CheckMATE result	Allowed	Allowed					
r -value	0.07	0.12					
Analysis ID	$atlas_\text{conf}_2017_\text{060}$	$atlas_\text{conf}_2020_\text{048}$					
Signal region ID	EM7	EM09					

Singlino-Higgsino coannihilation scenario with a hard ISR

 χ_1^{\pm} and $\chi_{2,3}^{0}$ would primarily be produced at the LHC with equal and opposite P_T

In the presence of the ISR jet, $(\chi_1^{\pm}\chi_{2.3}^0)$ system recoils against the ISR jet in the transverse plane.

Due to the small mass difference between the LSP and the higgsino-like states, a significant portion of the P_T of the higgsino-like χ_1^{\pm} and $\chi_{2,3}^0$ is transferred to the LSP, contributing to event $\not\!\!E_T$ that approximately balances with P_T of the ISR jet.

Peak of $\not\hspace{-1.2mm}E_{T}$ distribution occurs at a relatively higher value for the process involving the ISR jet.

Additionally, a broad high $\not\!\!E_T$ tail is observed for events containing one ISR jet.

This characteristic allows for more aggressive selection cuts on $\not\!\!E_T$ in the analysis, effectively rejecting a significant amount of the SM backgrounds at a moderate cost in losing signal events.

Similar broader high P_T tail of the leading jet is also observed in events containing one ISR jet.

Correlation between $P_T^{\rm jet}$ and $/\!\!\!\!E_T$ in events with one ISR jet,

imposing a stringent cut on ensures that most signal events have substantially larger

Differential event distributions

The presence of a single ISR jet in the events under those specified cuts $\not\!\!E_T$, $P_T^{\rm jet} > 100\,\rm GeV$ leads to a notable increase in the number of events at the peak of the distribution and a broadening of the high P_T^{γ} tail.

A substantial drop in the cross-section of the process in the absence of any ISR jet under such cuts.

Distribution exhibits a peak at a slightly higher P^{γ}_T when the ISR jet is considered

suggesting an overall transverse boost for the photon This can be understood from the fact that if the decaying photon from $\chi^0_{2,3}$ originated in the same direction in which $\chi_{2,3}^0$ are produced and boosted due to large P_T of the ISR jet in the event.

ATLAS and CMS reported mild excesses in electroweakino searches

Observed mild excess ($\sim 2\sigma$) in the (soft lepton analysis) trilepton + missing energy and dilepton + missing energy scenario for chargino-netralino masses around 200 GeV and mass gap around 20 GeV.

Recently, a paper by Agin et al. (arXiv:2311.17149) claims that the current monojet searches (arXiv: 2102.10874, 2107.13021) show excesses in a region that partially overlaps with that favored by the soft-lepton analyses.

The excess in the soft lepton channels can be explained within the context of singlino-higgsino co-annihilation scenarios discussed in our paper

Such a co-annihilation scenario can also indicate another possible detection channel involving photons.

A dedicated analysis can be done using the exiting Run 2 data of LHC

Conclusion

- A new blind spot condition $\kappa < 0$ for singlino-dominated dark matter resulting from bino and higgsino tempering.
- This blind spot condition demads same relative sign between M_1 and $\,\mu_{\textrm{eff}}$, which generates a positive contribution from the Bino-smuon loop to a_μ .
- Higgsino-like states prefer radiative decay
- The compressed scenario is emerging as a promising WIMP-DM candidate, being explored through combined LHC and direct detection efforts.
- Here, we suggest a new radiative decay search for higgsino-like neutralinos in the singlino-higgsino coannihilation scenario, complementing current multilepton searches.
- For the singlino-higgsino scenario, consider a hard ISR jet with $pp \rightarrow \chi_1^\pm \chi_{2.3}^0$ process Select signal region with a hard mono-jet with significant missing energy and at least one photon.
- For the case of singlino-bino scenario, photons can become relatively hard due large mass difference between higgsino-like states and bino-like NLSP.

This scenario could leads to $3\ell + \geq 1\gamma + \rlap{\,/}E_T$ or $1\ell + 2b + \geq 1\gamma + \rlap{\,/}E_T$ final states at the LHC.

Thank you