Reinterpretation of ATLAS results for exotic decay H125 $\rightarrow \ell \ell \ell + E_T^{miss}$ in nMSSM

VESTMONT

UNIVERSITY OF

Enzo Brandani^{*1} Ben Carlson^{1,2} Chris Hayes³ Tae Min Hong¹

[2]

MICHIGAN ATLAS-DPF-PHENO

May 14, 2024

https://indico.cern.ch/event/1358339/ contributions/5899440/

Outline

$H \rightarrow \ell \ell \ell + E_T^{miss} \operatorname{RECAST}$

- 1. Overview
 - Motivation
 - RECAST
 - REANA Tests
- 2. Results
 - Branching Ratio Limits
 - Sensitivity Comparisons
- 3. Conclusions and Next Steps

Overview: Physics Motivation

 Standard Model is great, but still have some issues:

- Hierarchy problem
- Galactic Center Excess^[1]
- Higgs is good start point for Dark Matter searches even at weak couplings, it has relatively large branching ratio to new physics
- To address this, we consider extensions of Supersymmetry with an extra scalar particle
 - Motivated by the NMSSM in an approximate Peccei-Quinn symmetry limit
- Focus on di-tau \rightarrow lepton decays

Brandani

Phys. Rev. Lett. 112,221803 (2014)

Feynman diagram for signal decay channel

 In this limit, expect Higgs with following topology:

$$H \to \chi_1 \chi_2$$
$$m_{\chi 2} - m_{\chi 1} > min\{m_s, m_a\}$$
$$\chi_2 \to a\chi_1$$

Overview: RECAST

- Analysis preservation and reinterpretation framework (RECAST)
 - Preserves completed analysis (systematics, background estimations, etc.) + original virtual environment to run analysis code

RECAST Data and BKGs

- Same final state (opposite sign, same flavor dilepton with significant MET)
- Our model most sensitive to electroweakino channel

Feynman diagrams for Models investigated in published ATLAS search. Diagrams: a) ggF electroweakino, VBF electroweakino, slepton pair production

 Have access to electroweakino and slepton pair channels from full analysis (except for 1 lep + 1 track)

RECAST Data and BKGs

Now, take our signal model distributions for dimuon mass:

New Input Signal

• These distributions populate these signal regions:

RECAST Data and BKGs

^{1.} Phys. Rev. D 101 (2020) 052005

Overview: RECAST

Overview: Testing REANA

Brandani

- using REANA (ATLAS cloud computing software for RECAST), generated results (see below)
 - Limit on signal strength at 95% confidence level can be read from these graphs using the mu_SIG value where red line intersects with CLs lines
- Used existing VBF Higgs samples to test RECAST output
- We took an array of mass points for a and χ_2 and find the limit as a function of the a mass

RECAST Output Example

Asymptotic CL Scan for workspace result_mu_SIG

Results: Branching Ratio Limits

- Observed mild excess around these masses for model independent limit in original analysis
- further investigation currently underway for our signal

m_a GeV

Results: Sensitivity Comparisons

Brandani

Here, compare the model-independent results on the branching ratio to the previous bb + MET analysis.

- Br($a \rightarrow \tau \tau$) vs Br($a \rightarrow bb$) is model dependent on factors like $tan(\beta)$
- Able to probe the region below 20 GeV for the first time!
- Obs (Exp) Limits are approximately a factor of 2 worse in the range 20 GeV < ma < 60 GeV

Next Steps: Sensitivity in mumu

- Able to run some select VBF mumu points through RECAST:
 - Observed (Expected) limits on Br(H→($\ell\ell$ +MET))
 - ma = 3 GeV, mχ2 = 120 GeV: 0.031 (0.033)
- Quick estimate sensitivity for ggF mumu points:
 - Scale by ratio of VBF acceptance to ggF acceptance and ratio of respective cross sections
 - For ma = 4 GeV, $m\chi^2$ = 110 GeV ~ .0030 (.0032)
 - For ma = 20 GeV, m χ 2 = 110 GeV ~ .0027 (.0029)
- Looking at 1-2 order of magnitude better sensitivity!

With RECAST,

- able to quickly and efficiently calculate limits without dedicated analysis.
- Able to probe m_a < 20 GeV for the first time

We are working on:

- a second sample request for µµ channel to investigate excess, given the excellent sensitivity of this channel.
- Calculating model dependent limits

This work will continue with the goal of an internal PUB note. Many thanks to Ben, Chris, Tae for their continued support.

Questions?

	Electroweakino SR requirements				
Variable	SR-E-low	SR-E-med	SR-E-high	SR-E-1ℓ1T	
$E_{\rm T}^{\rm miss}$ [GeV]	[120, 200]	[120, 200]	>200	>200	
$E_{\rm T}^{\rm miss}/H_{\rm T}^{\rm lep}$	<10	>10	•••	>30	
$\Delta \phi(\text{lep}, \mathbf{p}_{\text{T}}^{\text{miss}})$				<1.0	
Lepton or track $p_{\rm T}$ [GeV]	$p_{\mathrm{T}}^{\ell_2} > 5 + m_{\ell\ell}/4$		$p_{\rm T}^{\ell_2} > \min(10, 2 + m_{\ell\ell}/3)$	$p_{\mathrm{T}}^{\mathrm{track}} < 5$	
$M_{\rm T}^{\rm S}$ [GeV]	•••	<50	•••		
$m_{\mathrm{T}}^{\hat{\ell}_1}$ [GeV]	[10, 60]		<60		
R _{ISR}	[0.8, 1.0]	•••	$[\max(0.85, 0.98 - 0.02 \times m_{\ell\ell}), 1.0]$		

PHYS. REV. D 101, 052005 (2020)

Backup: Why tau?

Branching ratios for high/low $tan(\beta)$ for Type-II 2HDM

Type II, $\tan \beta = 0.5$

Type II, $\tan \beta = 5$

m_a GeV

m_a GeV

m_a GeV

Backup: Validation of mumu samples

Brandani

• Acceptance scan in m_a vs. m_{χ_2} for new $\mu\mu$ samples

				gg⊢	Н		
5 80	Γ						
<u>б</u> 60			Simulation Work in	0.0139	0.0208	0.0189	0.0157
50		ATLAS	Progress	0.0270	0.0313	0.0262	0.0230
E 40			1 1091000	0.0246	0.0209	0.0192	0.0203
30			0.0206	0.0210	0.0177	0.0216	0.0209
20			0.0238	0.0222	0.0236	0.0254	0.0208
15			0.0250	0.0257	0.0288	0.0271	0.0222
10		0.0352	0.0383	0.0406	0.0380	0.0330	0.0301
8		0.0428	0.0395	0.0431	0.0418	0.0411	0.0284
6		0.0451	0.0468	0.0470	0.0477	0.0418	0.0298
5		0.0505	0.0494	0.0518	0.0479	0.0470	0.0312
4		0.0514	0.0554	0.0556	0.0552	0.0455	0.0352
3.5		0.0529	0.0564	0.0569	0.0548	0.0457	0.0329
3.25		0.0589	0.0557	0.0587	0.0516	0.0451	0.0365
3		0.0288	0.0302	0.0298	0.0269	0.0230	0.0163
2.75		0.0604	0.0621	0.0603	0.0571	0.0448	0.0380
2.5		0.0578	0.0575	0.0600	0.0587	0.0456	0.0346
2.25		0.0577	0.0554	0.0589	0.0538	0.0422	0.0318
2		0.0547	0.0514	0.0585	0.0527	0.0418	0.0292
1.75		0.0522	0.0565	0.0532	0.0463	0.0354	0.0249
1.5		0.0451	0.0456	0.0498	0.0441	0.0277	0.0201
1.25		0.0370	0.0429	0.0383	0.0333	0.0242	0.0145
1		0.0131	0.0116	0.0135	0.0107	0.0063	0.0038
		20	45	70	80	95	110

a→µµ ggF H

m_{x2} [GeV]

Backup: Validation of mumu samples

Brandani

- Acceptance scan in m_a vs. m_{χ_2} for new $\mu\mu$ samples

a→µµ VBF H

5 80						
<u>б</u> 60			0.0128	0.0185	0.0176	0.0117
50	ATLAS	Simulation work in Progress	0.0250	0.0294	0.0232	0.0212
E 40		T TOGICOS	0.0216	0.0196	0.0230	0.0212
30		0.0235	0.0191	0.0217	0.0221	0.0212
20		0.0223	0.0226	0.0271	0.0267	0.0234
15		0.0278	0.0303	0.0324	0.0317	0.0266
10	0.0379	0.0368	0.0404	0.0411	0.0381	0.0316
8	0.0461	0.0425	0.0495	0.0447	0.0413	0.0365
6	0.0486	0.0493	0.0478	0.0548	0.0454	0.0380
5	0.0515	0.0542	0.0526	0.0563	0.0490	0.0393
4	0.0599	0.0565	0.0629	0.0587	0.0491	0.0440
3.5	0.0612	0.0600	0.0615	0.0615	0.0510	0.0406
3.25	0.0620	0.0633	0.0591	0.0647	0.0468	0.0402
3	0.0273	0.0288	0.0334	0.0293	0.0263	0.0241
2.75	0.0606	0.0609	0.0597	0.0614	0.0538	0.0407
2.5	0.0615	0.0607	0.0607	0.0638	0.0548	0.0409
2.25	0.0605	0.0653	0.0592	0.0595	0.0526	0.0347
2	0.0535	0.0618	0.0622	0.0619	0.0462	0.0328
1.75	0.0524	0.0597	0.0558	0.0559	0.0377	0.0285
1.5	0.0496	0.0505	0.0511	0.0454	0.0340	0.0191
1.25	0.0389	0.0403	0.0391	0.0321	0.0218	0.0168
1	0.0140	0.0158	0.0129	0.0116	0.0070	0.0055
	20	45	70	80	95	110
						m _{v2} [GeV]

Observed (Expected) limits on $Br(H \rightarrow (\ell \ell + MET))$

mχ1 = 1 GeV	mχ2 = 6 GeV	mχ2 = 62 GeV	mχ2 = 63 GeV	mχ2 = 120 GeV
ma = 1 GeV	Х	0.0091 (0.017)	Х	Х
ma = 2 GeV	X	X	0.0082 (0.0050)	X
ma = 3 GeV	0.0089 (0.0091)	Х	0.0072 (0.0070)	0.031 (0.033)