ANNIE with LAPPDs **Accelerator Neutrino Nucleus Interaction Experiment** with Large Area Picosecond Photodetector

Yue Feng on behalf of the ANNIE Collaboration **Iowa State University** yuef@iastate.edu

ANNIE physics

- ANNIE shares the BNB with several LAr experiments.
- Comparison of oxygen & LAr σ
- Direct relevance for long-baseline experiments, • similar kinematic parameters with DUNE and HK FD.
- Neutron multiplicity from CC σ for event generators

ANNIE technology

LAPPD package for deployment

- Gd for neutron multiplicity measurements.
 - Enhances thermalized neutron capture efficiency from $\sim 10\%$ to $\sim 70\%$.
 - Shortens capture time from ~200 μs of H to ~20µ*s*
 - Increase the captured γ energy from ~2.2MeV to ~8MeV
- WbLS test volume deployed.
 - Significant increase of light yield observed. (Paper here)
- LAPPD applied
 - In simulation with 5 LAPPDs, the vertex reconstruction can be improved from ~38 cm to ~12cm.

ANNIE detector

- and a optional WbLS vessel.
- LAPPD: sub-nanosecond timing.
- Muon Range Detector (MRD): 11 X-Y arranged paddle shape scintillator layers with iron absorbers.

ANNIE combined-detector has ~100 PMTs, a MRD, and a few LAPPDs with 26-ton Gd water,

An neutrino event in ANNIE detector

- One event contains data from tank PMTs, LAPPD, and MRD.
- Combined to give the information of a ν event.

A CCQE example Red box shows the LAPPD position

5

LAPPD mechanism

ACDC cards

LAPPD Assembly

Structure of a LAPPD package

First-ever detection of neutrinos with LAPPDs

n	n	ie	
~~	~	~	
	N	200	0

First-ever detection of neutrinos with LAPPDs

- BNB spill width $1.6\mu s$ was correctly detected.
- ~1200 neutrino candidates identified after cuts for data in ~half beam year.

Yue Feng - Iowa State University, DPF 2024 - May 16 2024

LAPPD Hit Arrival Time Gradient Y Position (сm) г 20 10 X Strips

The 20*20cm LAPPD surface

Calculated from corresponded muon

LAPPD imaging capability

- \bullet all-detector reconstruction.
- For the muon track of each event, project the Cherenkov light to LAPPD surface.
- The projection highly depends on the relative position to the LAPPD. ullet

Yue Feng - Iowa State University, DPF 2024 - May 16 2024

A LAPPD is a self-consistent 2D detector, which means ideally the relative timing between strips can give the event topology, before using

	_
	S
1	
5	_
	υ
1	
ï	
Ŕ	

LAPPD imaging capability

- Without single photon disambiguation, we can still use the piled up "hit" to get the relative timing information between strip.
- \bullet "hit".
- By using this arrival time between each strip, we can construct the LAPPD timing gradient of a muon track.

Assume the Cherenkov light cover the whole LAPPD surface, pile up all photons on each strip to get a pulse, then get the initial arrival time of this

ANNIE summary

- ANNIE will measure neutrino nucleus cross section in water, directly comparable to SBND/MicroBooNE data in the same beam.
- ANNIE is a test bed for novel technologies.
 - LAPPDs successfully integrated with other subsystems.
 - First neutrino detected with LAPPD.
 - First demonstration of LAPPD imagine capability with beam neutrinos.
 - Deploying multiple LAPPDs for physics measurements in one system.
 - Possible application for LAPPD on Theia
- Apply Gd for neutron multiplicity measurements succeeded.
- First study with small WbLS volume and beam neutrinos.

ANNIE collaboration

United States

- Iowa State
- UC Davis
- Florida State
- UC Irvine
- Ohio State
- Rutgers
- SDSMT
- Associate:
 LBNL/UC Berkeley
 BNL
 Livermore

14 member institutions, 40+ active collaborators, new collaborators are welcome!

Abroad

- Demokritos
- Erciyes
- Hamburg
- Kanpur
- Mainz
- Tübingen
- Warwick
- Associate:
 Sheffield

Where is ANNIE?

26 ton Gd-water Cherenkov detector at BNB, Fermilab

LAPPD reconstruction simulation

- ~12cm.
 - Improved knowledge of neutrino energy.
 - Better vertex reconstruction for neutron containment.

In simulation with 5 LAPPDs, the vertex reconstruction can be improved from ~38 cm to

ANNIE with WbLS

 Data with WbLS vessel SANDI successful Detection Improvement)

Data with WbLS vessel SANDI successfully analyzed. (Scintillator for ANNIE Neutrino

ANNIE physics

- The MRD has resolution limits ~40cm at the center of the tank.
- LAPPD can constraint the muon direction more!

Yue Feng - Iowa State University, DPF 2024 - May 16 2024

All volume and distance proportional to real size.

Waiting for more data to get a statistic performance for LAPPD imaging capability. Yue Feng - Iowa State University, DPF 2024 - May 16 2024

LAPPD in ANNIE: next

- All LAPPDs are somehow unique because of the MCPs and the photocathode.
- Multi-LAPPDs data are being analyzed.

• Electronics need to be tested to match the the resistances of MCPs and the LAPPD package need to be tested before deployment.

Gen-II LAPPD

One kind of Gen-II example

Charge ratio distribution for transverse fitting

Cragre ratio relative to an absolute center

Neutron background

Muon distribution with/without WbLS

Amplitude distribution of different HV

Yue Feng - Iowa State University, DPF 2024 - May 16 2024

Comparison between NNLS and formula fitting

Yue Feng - Iowa State University, DPF 2024 - May 16 2024

 $\sigma_1 = 19.77mm$ $\sigma_2 = 24.43mm$ $\sigma_3 = 28.05 mm$ $\sigma_4 = 31.66mm$

> Result for multiple hits not showing the real behavior, but an estimation of noise effect and algorithm.

Simulation consider hits in the whole range of readout window.

Resolution for Averaged fitting, *t_{reco}*

