DPF May 13, 2024

Lauren Osojnak

University of Pennsylvania

A search for R-parity violating supersymmetry through top squark pair production in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS experiment

Motivation

- R-parity conservation often invoked in SUSY to prevent Baryon # violating and Lepton # violating terms; also to preserve stability of the proton
- If R parity is violated \rightarrow LSP allowed to decay into only standard model particles (proton still stable)
- Examine R-parity violating SUSY \rightarrow stop squark as LSP
- B-L Model motivated by University of Pennsylvania theorists; Marshall, Ovrut, Purves, Spinner, PLB 732 (2014) 325-329 <u>arxiv</u>

Early Run 2 Analysis: ATLAS Collab, Phys. Rev. D 97 (2018) 032003

Analysis Strategy

- Experimental signature: 2 opposite charged leptons and 2 b-jets (fully reconstructable in ATLAS)
- Target Signal:
 - •2 opposite sign leptons (e or μ)
 - •2 jets (\geq 1 b-tag)
- Kinematic variables: $H_T m_{ll} m_{asym} m_{bl}$
- Variable bin-width signal region
- Two exclusion fits for each stop mass + lepton BR combination: 15 bin agnostic fit and 45 bin flavor aware

$$m_{\mathrm{b}\ell} \text{ asymmetry} = rac{\left(m_{\mathrm{b}\ell}^0 - m_{\mathrm{b}\ell}^1\right)}{\left(m_{\mathrm{b}\ell}^0 + m_{\mathrm{b}\ell}^1\right)}$$

Primary Backgrounds

- Developed Control Regions (CRs) to constrain primary backgrounds: $t\bar{t}$, Single-top, and Z+jets
- Top Backgrounds
 - •2 leptons from W decay, \geq 1 b-jet
 - CRtt -events with mis-paired jets and leptons
 - CRst- separation of $t\bar{t}$ and single-top

tt

- <u>Z+jets + heavy flavor</u>
 - 2 leptons from Z decay, jets from ISR/FSR
 - CRZ- isolate leptons from Z boson decay

Control and Validation regions

CRtt

CRst

CRs show backgrounds are well modeled.

Signal Region

- Variable bin-width: Optimization study over m_{hl}^0 bins
- Two <u>exclusion fits</u> for each stop mass + lepton BR combination:
 - 15 bin agnostic fit
 - 45 bin flavor aware (EE, EM, MM)
- Choose configuration with strictest expected limits for each BR and mass point

	10	SH	
Events	10 ⁵		
	10 ⁴	A √s SF	LA =13 {
	10 ³		
	10 ²		
	10		
	1		·
		[400,450]	450,500]

Results

May 13, 2024

• Expected improvement of early Run 2 limits:

1400 GeV \rightarrow 1800 GeV for BR($\tilde{t} \rightarrow \mu b$) =100%

1500 GeV \rightarrow 1900 GeV for BR($\tilde{t} \rightarrow e$) = 100%

600 GeV \rightarrow 1100 GeV for BR($\tilde{t} \rightarrow \tau$) = 90%

Conclusions

• Expected increased sensitivity from:

- Larger dataset
- Fit to the mass distribution of the leading lepton-jet pair
- Improved systematics below ~20% for all m_{bl} bins in the distribution

Thanks for listening!

Backup

May 13, 2024

Region Selection

Region	$ N_b$	<i>m</i> ⁰ _{<i>bl</i>} [GeV]	$m_{bl}^{1,\mathrm{rej}}$ [GeV]	H_T [GeV]	m _{bl} asym	<i>m</i> _{<i>ll</i>} [GeV]	$m_{bl}^{0,\mathrm{rej}}$ [GeV]
SR	≥ 1	> 400	> 150	> 1000	< 0.2	>300 GeV	_
CRtt	≥ 1	[180,500]	< 150	[500,800]	< 0.2	>200 GeV	< 180
CRst	= 2	[180,500]	< 150	[400, 800]	< 0.2	>200 GeV	> 180
CRZ	≥ 1	> 700	_	> 1000	< 0.2	[76.2,106.2]	_
VR m_{bl}^0	≥ 1	> 500	< 150	[600,800]	< 0.2	>300 GeV	—
VR $m_{bl}^{1,rej}$	≥ 1	[200,500]	> 150	[600,800]	< 0.2	>300 GeV	_
VR H_T	≥ 1	[200,500]	< 150	> 800	< 0.2	>300 GeV	_
VRZ	= 0	[500,800]	> 150	> 1000	< 0.2	>300 GeV	_

