Studies into di-*t* **mass reconstruction for** *high mass resonances at the ATLAS experiment*

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

Motivation

- Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS collaborations:
	- Dedicated analyses for the Higgs self-interaction have been underway to reveal details of the shape of the Higgs potential.
	- The Higgs self-coupling measurement is a major focus of the LHC/HL-LHC

- The HH → bb $\tau\tau$ channel has the third highest branching ratio in these studies.
	- **▶ The branching ratio of one of these Higgs decaying into two tau leptons is** significant with $BR = 6.32\%$

Motivation

- Beyond-the-Standard-Model (BSM) analyses dedicated to extending the Higgs sector of the SM have been underway at ATLAS
	- This stems from the theoretical motivations for releasing the mass constraint D of the Higgs (i.e. candidates for heavy dark matter)
- BSM model considered: Two Real Scalar Singlet Extension to the Standard Model [\[arXiv:2209.10996](https://arxiv.org/abs/2209.10996)]
	- Extends the Higgs sector by two neutral scalar singlets: X and S
	- \triangleright X is set to decay to S and the SM Higgs, S is set to S $\rightarrow \tau \tau$ and the SM Higgs is set to $H \rightarrow bb$

• Benchmark scenarios for this model have already been published and are the basis of this analysis.

Di - events in the ATLAS detector

- τ leptons have two decay paths:
	- A light lepton (e / μ) + two neutrinos
	- \triangleright A jet + one neutrino
- Full reconstruction of di τ invariant mass is impossible
	- Due to neutrinos involved in the events, which escape detection in D ATLAS

- Mass reconstruction with visible tau mass leads to a significant deviation from the true mass.
	- The invisible contribution is non-trivial.
- ATLAS utilizes a probabilistic mass reconstruction technique:

Missing Mass Calculator (MMC) \triangleright

- \circ Current method of di τ mass reconstruction used in ATLAS
- Finds the most probable solutions to a system of equations based on event kinematics.
- \circ Calibrated for $Z \rightarrow \tau \tau$ events, underestimates Higgs mass

MMC performance at higher mass resonances

- Tests on the MMC performance at higher masses were conducted:
	- X and S masses in consideration: X (350 1500 GeV) and S (100 - 700 GeV)
	- deteriorates.

Deep learning solution

- Goal: to utilize a technique that is agnostic to the mass that it is trained on
- A deep neural network can provide a solution to the problems faced with the MMC
	- ► MMC is calibrated on the mass of the Z boson (~ 91 GeV), thus it is more accurate at resonances closer to the Z mass
		- NN is able to calculate masses higher than 91 GeV with higher accuracy
- Deep Neural Network (DNN) tests have been conducted and compared to the MMC

- $N_{IN} = 31$ nodes
- $N_{HL} = 3$ Hidden Layers \rightarrow 100 Nodes per Hidden Layer
- Chosen hyperparameters:
	- **Adam** optimizer
		- **MAPE (Mean Absolute Percentage Error)** loss function
		- **200** Epochs
		- Batch size of **32**
		- Learning Rate of **0.01**
- Chosen input variables, based on MMC input parameters:
	- \triangleright τ_1 -vis and τ_2 -vis: p_T , η , φ , m
	- MET: MET, **ϕ**, px, py, **Σ**ET B
	- Jet 1 and Jet 2: E, p_{T} , n , $\mathsf{\Phi}$ \triangleright
	- Number of jets per event \triangleright
	- \triangleright $\Delta \varphi(\tau_1$ -vis, τ_2 -vis), $\Delta \varphi(\tau_1$ -vis, **MET),** Δ ϕ (τ ₂-vis, MET), Δ **η**(τ ₁-vis, τ_2 -vis), $\Delta R(\tau_1$ -vis, τ_2 -vis)

Chosen DNN Architecture

Chosen via Bayesian optimization

0 0.05 0.1 0.15 \Box $0.2\Box$ $0.25 0.3\Box$ $0.35⁵$ $0.4 \Box$ GeV] $\frac{1}{2}$ dm $\frac{1}{2}$ 20 40 60 80 100 120 140 160 180 200 Epoch $1.5 2\Box$ 2.5 3 3.5 4 4.5 Loss 5 **-**- Training Loss **-** Validation Loss \sqrt{s} = 13 TeV, 139 fb⁻¹ Loss per Epoch *ATLAS* Work in Progress 100 200 300 400 500 600 −500 −400 -300 $\overline{}$ −200 −100 0 — - m^{Truth} relative difference [m^{Pred} relative difference [m • First tests of the deep neural network is trained on hadronic $Z \rightarrow \tau \tau$ events Internal evaluation during the training show low deviation from the true mass γ 0.05 \Box 0.1 0.15 0.2 0.25 [1. / GeV] $\frac{1}{2}$ dm $\frac{1}{2}$

 $m_{ττ}$ [GeV]

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

• Evaluated on **hadronic Z** $\rightarrow \tau \tau$ events

Neural Network performance

• We are looking at an alternate di- τ mass reconstruction method in the

Summary + Next Steps

- context of $X \rightarrow SH$, where $S \rightarrow \tau \tau$
- DNN performance on Z/H masses show promising results Tests show improved resolution and mean compared to the MMC
- Next steps:
	- **■** Test the performance of this DNN on a wider range of masses beyond the Z/Higgs mass
	- \triangleright We will check NN performance on relevant di- τ backgrounds
	- **▶ Sequentially training the DNN on different masses**

$$
\mathcal{P}(E_{Tx,y}) \times \mathcal{P}(E_{vis,\tau1}) \times \mathcal{P}(E_{vis,\tau2})) \times \mathcal{P}(m_{miss1}) \times \mathcal{P}(m_{res1})
$$

t use
\n
$$
\oint_{\text{Tr}_x} = p_{\text{mis}_1} \sin \theta_{\text{mis}_1} \cos \phi_{\text{mis}_1} + p_{\text{mis}_2} \sin \theta_{\text{mis}_2} \cos \phi
$$
\n
\nthe
\n
$$
\oint_{\text{Tr}_y} = p_{\text{mis}_1} \sin \theta_{\text{mis}_1} \sin \phi_{\text{mis}_1} + p_{\text{mis}_2} \sin \theta_{\text{mis}_2} \sin \phi
$$
\n
$$
M_{\tau_1}^2 = m_{\text{mis}_1}^2 + m_{\text{vis}_1}^2 + 2\sqrt{p_{\text{vis}_1}^2 + m_{\text{vis}_1}^2} \sqrt{p_{\text{mis}_1}^2 + m}
$$
\n
$$
-2p_{\text{vis}_1} p_{\text{mis}_1} \cos \Delta t
$$
\n
$$
M_{\tau_2}^2 = m_{\text{mis}_2}^2 + m_{\text{vis}_2}^2 + 2\sqrt{p_{\text{vis}_2}^2 + m_{\text{vis}_2}^2} \sqrt{p_{\text{mis}_2}^2 + m}
$$
\nhood is

\n
$$
-2p_{\text{vis}_2} p_{\text{mis}_2} \cos \Delta t
$$

More info on MMC

 $\mathcal{L} = -\log(\mathcal{P}(\Delta R_{vis,miss1,p_T1}) \times \mathcal{P}(\Delta R_{vis,miss2,p_T2}) \times \mathcal{L}$

- First proposed here: arXiv: 1012.4686
- •The Missing Mass Calculator (MMC) utilizes a system of equations that the missing values that are carried away by neutrinos, and the observa properties of the visible decay products.
- \bullet MMC assumes the only source of \bm{E}_T are the neutrinos.
- For each event, the MMC scans over the possible configurations of the and invisible decay products.
	- For each configuration, the final solution with the highest log-likelihood is set as the final estimator for m_H .

System of equations the MMC solves, these four equations connect the visible and invisible properties of each event

Previous NN work

- Groups in both ATLAS and CMS have done work into potential NN solutions to di τ mass reconstruction.
	- The ATLAS group at the University of Bonn employed a Neural Network with a mass grid of 60 - 220 GeV

<https://www.pi.uni-bonn.de/desch/de/ergebnisse/dateien/t00000102.pdf>

