

Studies into di-au mass reconstruction for high mass resonances at the ATLAS experiment

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

Motivation

- Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS collaborations:
 - Dedicated analyses for the Higgs self-interaction have been underway to reveal details of the shape of the Higgs potential.
 - The Higgs self-coupling measurement is a major focus of the LHC/HL-LHC

	bb	WW	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

- The HH \rightarrow bb $\tau\tau$ channel has the third highest branching ratio in these studies.
 - The branching ratio of one of these Higgs decaying into two tau leptons is significant with BR = 6.32%

Decay channel	Branching ratio	Rel. uncertainty
$H ightarrow \gamma \gamma$	2.28×10^{-3}	$+5.0\% \\ -4.9\%$
$H \rightarrow ZZ$	2.64×10^{-2}	$^{+4.3\%}_{-4.1\%}$
$H \to W^+ W^-$	2.15×10^{-1}	$^{+4.3\%}_{-4.2\%}$
$H \to \tau^+ \tau^-$	6.32×10^{-2}	$^{+5.7\%}_{-5.7\%}$
$H \to b \bar{b}$	5.77×10^{-1}	$^{+3.2\%}_{-3.3\%}$
$H \to Z\gamma$	1.54×10^{-3}	$+9.0\%\ -8.9\%$
$H \to \mu^+ \mu^-$	2.19×10^{-4}	$^{+6.0\%}_{-5.9\%}$

otons is

2

Motivation

- Beyond-the-Standard-Model (BSM) analyses dedicated to extending the Higgs sector of the SM have been underway at ATLAS
 - This stems from the theoretical motivations for releasing the mass constraint of the Higgs (i.e. candidates for heavy dark matter)
- BSM model considered: Two Real Scalar Singlet Extension to the Standard Model [arXiv:2209.10996]
 - Extends the Higgs sector by two neutral scalar singlets: X and S > X is set to decay to S and the SM Higgs, S is set to S $\rightarrow \tau \tau$ and the SM Higgs is
 - set to $H \rightarrow bb$

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

Benchmark scenarios for this model have already been published and are the basis of this analysis.

Di - τ events in the ATLAS detector

- τ leptons have two decay paths:
 - A light lepton (e / μ) + two neutrinos
 - A jet + one neutrino
- Full reconstruction of di τ invariant mass is impossible
 - Due to neutrinos involved in the events, which escape detection in ATLAS

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

- Mass reconstruction with visible tau mass leads to a significant deviation from the true mass.
 - The invisible contribution is non-trivial.
- ATLAS utilizes a probabilistic mass reconstruction technique:

Missing Mass Calculator (MMC)

- \circ Current method of di τ mass reconstruction used in ATLAS
- Finds the most probable solutions to a system of equations based on event kinematics.
- Calibrated for $Z \rightarrow \tau \tau$ events, underestimates Higgs mass

MMC performance at higher mass resonances

- Tests on the MMC performance at higher masses were conducted:
 - ▶ X and S masses in consideration: X (350 1500 GeV) and S (100 - 700 GeV)
 - deteriorates.

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

Deep learning solution

- Goal: to utilize a technique that is agnostic to the mass that it is trained on
- A deep neural network can provide a solution to the problems faced with the MMC
 - MMC is calibrated on the mass of the Z boson (~ 91 GeV), thus it is more accurate at resonances closer to the Z mass
 - NN is able to calculate masses higher than 91 GeV with higher accuracy
- Deep Neural Network (DNN) tests have been conducted and compared to the MMC

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

Chosen DNN Architecture

- $N_{IN} = 31$ nodes
- $N_{HL} = 3$ Hidden Layers $\rightarrow 100$ Nodes per Hidden Layer
 - Chosen hyperparameters:
 - Adam optimizer
 - **MAPE (Mean Absolute Percentage Error)** loss function
 - **200** Epochs
 - Batch size of **32**
 - Learning Rate of **0.01**

Chosen via Bayesian optimization

- Chosen input variables, based on MMC input parameters:
 - \triangleright τ_1 -vis and τ_2 -vis: p_T , $\mathbf{\eta}$, $\mathbf{\phi}$, m
 - MET: MET, ϕ , p_x , p_y , ΣE_T
 - Jet 1 and Jet 2: E, p_T, **η**, **φ**
 - Number of jets per event
 - $\Delta \mathbf{\Phi}(\tau_1 \text{-vis}, \tau_2 \text{-vis}), \Delta \mathbf{\Phi}(\tau_1 \text{-vis}, \tau_2 \text{-vis}))$ MET), $\Delta \phi(\tau_2$ -vis, MET), $\Delta \eta(\tau_1$ -vis, τ_2 -vis), $\Delta R(\tau_1$ -vis, τ_2 -vis)

Neural Network performance

• First tests of the deep neural network is trained on hadronic Z $\rightarrow \tau \tau$ events GeV] 0.4⊟ Los 0.35 Ē ATLAS Work in Progress dN / dm $_{\tau\tau}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 0.3 Loss per Epoch 4.5 0.25 --- Training Loss Validation Loss 0.2 3.5 0.15 0.1⊟ 2.5 0.05 0 1.5 120 100 140 160 20 60 80 180 200 40 Epoch GeV] - m^{Truth} 0.25 $\overline{}$ dN / dm_{\rm tr} [1. relative difference [m^{Pred} 0.2 -100 0.15 -200 –300 0.1 -400 Internal evaluation during the training show 0.05 low deviation from the true mass -500

500

600

 $m_{\tau\tau}$ [GeV]

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

300

400

200

100

• Evaluated on hadronic $Z \rightarrow \tau \tau$ events

100

50

Ŭ

150

200

250

300

 $m_{\tau\tau}$ [GeV]

350

-0.8 -0.6 -0.4 -0.2 0

Summary + Next Steps

- context of X \rightarrow SH, where S $\rightarrow \tau \tau$
- DNN performance on Z/H masses show promising results Tests show improved resolution and mean compared to the MMC
- Next steps:
 - Test the performance of this DNN on a wider range of masses beyond the Z/Higgs mass
 - We will check NN performance on relevant di- τ backgrounds
 - Sequentially training the DNN on different masses

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

• We are looking at an alternate di- τ mass reconstruction method in the

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

More info on MMC

 $\mathscr{L} = -\log(\mathscr{P}(\Delta R_{vis,miss1,p_T}) \times \mathscr{P}(\Delta R_{vis,miss2,p_T}) \times \mathscr{L}$

- First proposed here: <u>arXiv:1012.4686</u>
- The Missing Mass Calculator (MMC) utilizes a system of equations that the missing values that are carried away by neutrinos, and the observa properties of the visible decay products.
- •MMC assumes the only source of \mathbb{Z}_T are the neutrinos.
- For each event, the MMC scans over the possible configurations of the and invisible decay products.
 - For each configuration, the final solution with the highest log-likeli set as the final estimator for $m_{\rm H}$.

$$\mathscr{P}(\mathbb{Z}_{Tx,y}) \times \mathscr{P}(E_{vis,\tau 1}) \times \mathscr{P}(E_{vis,\tau 2})) \times \mathscr{P}(m_{miss 1}) \times \mathscr{P}(m_{p})$$

System of equations the MMC solves, these four equations connect the visible and invisible properties of each event

10

Previous NN work

- Groups in both ATLAS and CMS have done work into potential NN solutions to di aumass reconstruction.
 - The ATLAS group at the University of Bonn employed a Neural Network with a mass grid of 60 - 220 GeV

https://www.pi.uni-bonn.de/desch/de/ergebnisse/dateien/t00000102.pdf

Kyle Granados, Kathryn Grimm, Jason Veatch, Joshua Moss

11