ATLAS Search for Charged Higgs in context of the GM Model

Thomas Gosart DPF - PHENO May 14, 2024

Introduction

- The Georgi-Machacek (GM) model:¹ one of many BSM theories with expanded Higgs sector
- Originally from 1985; more significant work done since Higgs discovery

Citations per year

1: https://www.sciencedirect.com/science/article/pii/0550321385903256

Introduction

- The Georgi-Machacek (GM) model:¹ one of many BSM theories with expanded Higgs sector
- Originally from 1985; more significant work done since Higgs discovery

Original motivation: EWK symmetry breaking

Citations per year

baryon asymmetry, more

1: https://www.sciencedirect.com/science/article/pii/0550321385903256

Introduction

- The Georgi-Machacek (GM) model:¹ one of many BSM theories with expanded Higgs sector
- Originally from 1985; more significant work done since Higgs discovery

Original motivation: EWK symmetry breaking

Citations per year

• ATLAS and CMS conducted recent

searches in context of the model 1: <u>https://www.sciencedirect.com/science/article/pii/0550321385903256</u>

In addition to the SM doublet (φ), the GM model introduces real (ξ) and complex (χ) triplets:

$$\phi = egin{pmatrix} \phi_+ \ \phi_0 \end{pmatrix}, \quad \chi = egin{pmatrix} \chi_{++} \ \chi_{+} \ \chi_0 \end{pmatrix}, \quad \xi = egin{pmatrix} \xi_+ \ \xi_0 \ -\xi_- \end{pmatrix}$$

In addition to the SM doublet (φ), the GM model introduces real (ξ) and complex (χ) triplets:

$$\phi = egin{pmatrix} \phi_+ \ \phi_0 \end{pmatrix}, \quad \chi = egin{pmatrix} \chi_{++} \ \chi_{+} \ \chi_0 \end{pmatrix}, \quad \xi = egin{pmatrix} \xi_+ \ \xi_0 \ -\xi_- \end{pmatrix}$$

• Triplets are used to predict 10 physical fields: 5-plet, 3-plet, 2 singlets

$$H_5^{++} = \chi^{++}, \qquad H_5^{+} = \frac{(\chi^{+} - \xi^{+})}{\sqrt{2}}, \qquad H_5^{0} = \sqrt{\frac{2}{3}}\xi^{0} - \sqrt{\frac{1}{3}}\chi^{0,r},$$
$$H_3^{+} = -s_H\phi^{+} + c_H\frac{(\chi^{+} + \xi^{+})}{\sqrt{2}}, \qquad H_3^{0} = -s_H\phi^{0,i} + c_H\chi^{0,i},$$

• In addition to the SM doublet (ϕ), the GM model introduces real (ξ) and complex (χ) triplets:

$$egin{aligned} \phi = egin{pmatrix} \phi_+ \ \phi_0 \end{pmatrix}, & \chi = egin{pmatrix} \chi_{++} \ \chi_{+} \ \chi_0 \end{pmatrix}, & \xi = egin{pmatrix} \xi_+ \ \xi_0 \ -\xi_- \end{pmatrix} \end{aligned}$$

• Triplets are used to predict 10 physical fields: 5-plet, 3-plet, 2 singlets

In addition to the SM doublet (φ), the GM model introduces real (ξ) and complex (χ) triplets:

$$egin{aligned} \phi = egin{pmatrix} \phi_+ \ \phi_0 \end{pmatrix}, & \chi = egin{pmatrix} \chi_{++} \ \chi_{+} \ \chi_{0} \end{pmatrix}, & \xi = egin{pmatrix} \xi_+ \ \xi_0 \ -\xi_- \end{pmatrix} \end{aligned}$$

• Triplets are used to predict 10 physical fields: 5-plet, 3-plet, 2 singlets

$$H_1^0 = \phi^{0,r},$$

$$H_1^{0'} = \sqrt{\frac{1}{3}}\xi^0 + \sqrt{\frac{2}{3}}\chi^{0,r}$$

$$H = \cos \alpha H_1^0 - \sin \alpha H_1^{0'},$$

$$H = \sin \alpha H_1^0 + \cos \alpha H_1^{0'}.$$
SM Higgs

GM Model Features

• New triplet VEVs are the same: $v_{\chi} = v_{\xi}$; theory has 2 VEVs:

$$v_{\phi}^2 + 8v_{\chi}^2 \equiv v^2 = \frac{1}{\sqrt{2}G_F} \approx (246 \text{ GeV})^2 \qquad s_H \equiv \sin\theta_H = \frac{2\sqrt{2}v_{\chi}}{v}$$

- The 5-plet states $(H_5^{\pm\pm}, H_5^{\pm}, H_5^0)$ are fermiophobic
 - Do not contain doublet field content \rightarrow no fermion couplings
- Primarily decay to vector bosons can set $BR(H_5 \rightarrow VV) = 1$
 - Couplings H_5VV are function of the new VEV and SM constants
 - H_5 searches thus only depend on s_H and m_{H_5} easy to search phase space!

$H^{\pm\pm}$ and H^{\pm} Production

- At the LHC, the charged Higgs bosons can be produced via *vectorboson fusion (VBF)*
- BR($H_5 \rightarrow VV$) = 1 covers most of the model phase space¹

1: <u>https://cds.cern.ch/record/2002500/files/LHCHXSWG-2015-001_2.pdf</u>

$H^{\pm\pm}$ and H^{\pm} Production

- At the LHC, the charged Higgs bosons can be produced via *vector-boson fusion (VBF)*
- BR($H_5 \rightarrow VV$) = 1 covers most of the model phase space¹

Significant background from vector boson scattering (VBS) processes

1: <u>https://cds.cern.ch/record/2002500/files/LHCHXSWG-2015-001_2.pdf</u>

Previous Search Results

- H^{\pm} and $H^{\pm\pm}$ searched for previously with LHC Run 2
 - ATLAS: H^{\pm} resonance search¹ and $W^{\pm}W^{\pm}jj$ measurement²
- ATLAS observed 2 3σ local excesses!
- Combined GM Model interpretation underway with ATLAS
 - Note: a CMS search did not set more stringent limits

Previous Search Results

- H^{\pm} and $H^{\pm\pm}$ searched for previously with LHC Run 2
 - ATLAS: H^{\pm} resonance search¹ and $W^{\pm}W^{\pm}jj$ measurement²
- ATLAS observed 2 3σ local excesses!
- Combined GM Model interpretation underway with ATLAS
 - Note: a CMS search did not set more stringent limits

No search optimized specifically for GM model scalar production

1: <u>https://arxiv.org/abs/2207.03925</u> 2: <u>https://arxiv.org/abs/2312.00420</u> 3: <u>https://arxiv.org/abs/2104.04762</u>

ATLAS VBF H[±] Search Limit Plots

Source: https://arxiv.org/pdf/2207.03925.pdf

ATLAS VBF H[±] Search Limit Plots

ATLAS $W^{\pm}W^{\pm}jjH^{\pm\pm}$ Search Limit Plots

Source: https://arxiv.org/abs/2312.00420

ATLAS $W^{\pm}W^{\pm}jjH^{\pm\pm}$ Search Limit Plots

ATLAS Combined GM Model Limits

ATLAS Combined GM Model Limits

• LHC began new run (Run 3) at 13.6 TeV in 2022

• LHC began new run (Run 3) at 13.6 TeV in 2022

Additional data + model optimization + existing excess exciting new analysis!

• LHC began new run (Run 3) at 13.6 TeV in 2022

- New search (fully leptonic) began in 2023: Run 2 and partial Run 3 data
- Using ATLAS's state-of-the-art analysis tools
- Potential improvements: implement boosted $Z \rightarrow ee$ tagger, machine learning, utilize Higgs' scalar nature as in $h \rightarrow WW$ search¹

• LHC began new run (Run 3) at 13.6 TeV in 2022

- New search (fully leptonic) began in 2023: Run 2 and partial Run 3 data
- Using ATLAS's state-of-the-art analysis tools
- Potential improvements: implement boosted $Z \rightarrow ee$ tagger, machine learning, utilize Higgs' scalar nature as in $h \rightarrow WW$ search¹
- Next steps: reproduce Run 2 results, develop new signal region

Thank you!

Email: tgosart3@sas.upenn.edu

Back Up

The VEVs

• To preserve custodial symmetry, the triplet VEVs are equal:

$$v_{\chi} = v_{\xi} \equiv v_{\Delta}$$
 v_{Δ} and v_{χ} are used interchangeably

• The Wand Z masses constrain:

$$v_{\phi}^2 + 8v_{\chi}^2 \equiv v^2 = \frac{1}{\sqrt{2}G_F} \approx (246 \text{ GeV})^2$$

- v_{ϕ} is the SM Higgs doublet VEV
- EW symmetry is broken in the same way $\rightarrow W$ and Z mass terms unchanged from SM $\rightarrow \rho = 1$ preserved at tree level

$$m_W^2 = g^2 v^2/4$$
 and $m_Z^2 = g^2 v^2/(4\cos^2\theta_W)$

Motivation

- GM model is used to explain a number of open questions
- <u>SUSY</u>: possible to supersymmetrize GM model
- <u>Neutrino mass</u>: can provide small masses <u>via Seesaw mechanism</u>
- <u>Dark matter</u>: all GM particles can decay, but an <u>inert doublet</u> can be added to the model which creates a DM candidate
- <u>Baryon asymmetry</u>: <u>electroweak baryogenesis</u> via large triplet VEV
- <u>Muon *g* 2</u>: extended GM with an additional doublet can create corrections to explain *g 2* value
- <u>Wmass shift</u>: extended GM with custodial symmetry breaking terms

GM Model Implication Examples

- Dark matter: adds inert doublet Φ_2 with VEV = 0
 - Custodial symmetry preserved in the same way
 - Potentially detectable at the LHC
- Muon g 2: additional <u>Barr-Zee type</u> Feynman diagrams
 - Both singly and doubly charged Higgs contribute
 - Not unique to GM model; also possible in 2HDMs and HTMs

CMS $H^{\pm\pm}/H^{\pm}$ Search

