Revealing the fundamental character of the strong force

From PDFs to the underlying QCD

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

Pheno/DPF 2024 PITT PACC 14 May 2024

QCD: From PDFs to the underlying QCD

nPDFs: Extend Precision & Kinematic Reach in {x,Q²}

precision $f_A(x,Q)$ can serve as Boundary Condition for $f_A(x,Q,k_T,b_T,\sigma)$

QCD: From Parameterization to a Deeper Understanding

Proton PDF: $f_p(x,Q)$

generally NNLO; approaching ~1% precision; Boundary Conditions for nuclear PDF

Nuclear PDF: $f_A(x,Q)$

generally NLO; leverage proton PDF tools; recent progress encouraging (e.g., PDG)

evolve from parameterizing to deeper understanding of QCD

Extend kinematic {x,Q} range: ... probe extreme regions of QCD Low Q: non-perturbative region; correlation effects ... Low x: resummation; saturation; BFKL; ... Low W: resonance region; duality; ...

Need theoretical guidance in these regions

Extend Unpolarized Colinear to Spin, TMD & GPD

... explore full tomographic nuclear structure in spin, k_T , b_T precision $f_A(x,Q)$ can serve as Boundary Condition for $f_A(x,Q,k_T,b_T,\sigma)$ include Lattice QCD info on moments and quasi-PDFs

Need coordination/communication between efforts

... beyond parameterizations? ... nearest neighbor interactions

"Free nucleons" + "nucleon pairs"

8

	Improved fit compared to traditional approach							
$\chi^2/N_{ m data}$	DIS	DY	W/Z	JLab	$\left \chi^2_{ m tot} \right $	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$		
traditional	0.85	0.97	0.88	0.72	1408	0.85		Standard
baseSRC	0.84	0.75	1.11	0.41	1300	0.80		Free p & n
pnSRC	0.85	0.84	1.14	0.49	1350	0.82		Link p & n
$N_{\rm data}$	1136	92	120	336	1684			

Fully accounts for all DOF

Evidence for Modified Quark-Gluon Distributions in Nuclei by Correlated Nucleon Pairs

A.W. Denniston (D^{1,*} T. Ježo (D^{2,†} A. Kusina (D³, N. Derakhshanian (D³, P. Duwentäster (D^{2,4,5} O. Hen (D¹, C. Keppel (D⁶, M. Klasen (D^{2,7} K. Kovařík (D², J.G. Morfín (D⁸, K.F. Muzakka (D^{2,9} F.I. Olness (D¹⁰, ¹⁰ E. Piasetzky (D¹¹, ¹¹ P. Risse (D², ² R. Ruiz (D³, ³ I. Schienbein (D¹², ¹² and J.Y. Yu. (D¹²)

Hen Lab

ArXiV:2312.16293

12

Consistent with hypothesis that SRCs are (pn) pairs

Nuclear A	2	3	4	6	9	12	14	27	40	56	64	84	108	119	131	184	197	208
$\# ext{ data}$	275	125	66	15	49	196	101	73	92	134	61	84	7	152	4	37	50	163

Simple Nearest-Neighbor (SRC) inspired form yields remarkably good fit

Comparable/better than traditional approach

Coefficients scale with In(A)

Separate p,n fits are consistent with (pn) SRC pairs

$\chi^2/N_{ m data}$	DIS	DY	W/Z	JLab	$\chi^2_{ m tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
traditional	0.85	0.97	0.88	0.72	1408	0.85
baseSRC	0.84	0.75	1.11	0.41	1300	0.80
pnSRC	0.85	0.84	1.14	0.49	1350	0.82
$N_{ m data}$	1136	92	120	336	1684	

Nature is trying to tell us something

This parameter form connects to new concepts

CONCLUSIONS:

Assembling the puzzle pieces

Interdisciplinary ... Use tools from **HEP**, Nuclear, **& Lattice QCD**

... to really understand the strong force

QCD

OED

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24

22-24 March 2017, Oxford, UK

W. K. Kellogg Biological Station MICHIGAN STATE UNIVERSITY

Parton Distributions and Lattice Calculations (PDFLattice 2019)

Parton Distributions and Lattice Calculations (PDF Lattice 2024) 18-20 November 2024

CONCLUSIONS:

Assembling the puzzle pieces

Interdisciplinary ... Use tools from **HEP**, Nuclear, **& Lattice QCD**

... to really understand the strong force

QCD

OED

