

Measuring Neutral Pion Production in Muon Antineutrino Charged-Current Interactions at the NOvA Near Detector

Wanwei Wu

University of Pittsburgh On behalf of the NOvA Collaboration

DPF-PHENO 2024

May 14, 2024

NOvA Experiment

NOvA = NuMI Off-axis v_e Appearance

- Long-baseline neutrino oscillation experiment
- NuMI beam at Fermilab
 - Neutrino mode (v_{μ}) and antineutrino mode (\bar{v}_{μ})
 - Power record 954 kW in 2023
- Two functionally-identical tracking calorimeter

detectors

- Separated by ~810 km
- ~14 mrad off-axis, narrow-band beam around oscillation max
- Oscillation measurements through the v_{μ}/\bar{v}_{μ} disappearance and the v_e/\bar{v}_e appearance

$\overline{ u}_{\mu}$ Charged-Current π^0 @ NOvA Near Detector

NOvA Near Detector (ND)

- \sim 300 ton; 100 m underground at Fermilab; \sim 1 km from beam target
- Highly reflective extruded PVC cells filled with liquid scintillator; alternate in horizontal and vertical orientation for 3D views

С	CI	Н	0	Ti	
65.9%	16.1%	10.7%	3.0%	2.4%	

NOvA Simulation

- Scintillation light captured and routed to avalanche photodiodes (APDs) via wavelength shifting fibers
- High flux purity (92.5% $\bar{\nu}_{\mu}$) and large statistics (~1 million $\bar{\nu}_{\mu}$ CC interactions) in antineutrino mode
- $\overline{
 u}_{\mu}$ Charged-Current (CC) π^{0} measurement

$$\left(\frac{d\sigma}{dx_{\pi^{0}}}\right)_{i} = \frac{\sum_{j} U_{ij}^{-1} \left(N_{\text{Sel}}(x_{\pi^{0}})_{j} - N_{\text{Bkgd}}(x_{\pi^{0}})_{j}\right)}{N_{t} \phi \,\epsilon(x_{\pi^{0}})_{i} \,\Delta x_{\pi^{0} i}}$$

$\overline{ u}_{\mu}$ CC π^{0} Signal

Signal definition

$$\bar{\nu}_{\mu} + N \rightarrow \mu^+ + \pi^0 + X$$

- \bar{v}_{μ} CC interaction in fiducial volume in ND $\longrightarrow \pi^{0} \rightarrow \gamma + \gamma$
- At least one π^0 in the final states emerging from the nucleus

Secondary π^0 : produced outside the target nucleus is **background**

 Particle decay or inelastic scattering during particle propagation

Wanwei Wu

Motivation

- Neutrino oscillations are measured as a function of E_v and accurate estimation of E_v requires knowledge of final states
- \overline{v}_{μ} CC π^{0} provides insights on backgrounds to v_{e}/\overline{v}_{e} appearance
- Measuring \overline{v}_{μ} CC π^0 production constrains systematic uncertainties for neutrino interaction models

Experiment	Nuclear Target	E(GeV)	Selected Events	Efficiency	Purity
$\mathrm{ANL}(1982)(u_{\mu})$	H_2, D_2 Bubble Chamber	< 1.5	273	-	-
$\mathrm{BNL}(1986)(u_{\mu})$	D_2 Bubble Chamber	1.6	853	-	-
MiniBooNE(2011)(ν_{μ})	CH_2	0.965	5810	6%	57%
$SciBooNE(2014)(\nu_{\mu})$	CH	0.8	308	2%	38%
MINERvA(2015)($\bar{\nu}_{\mu}$)	CH	3.6	1304	6%	55%
MINERvA(2017)(ν_{μ})	CH	3.6	6110	8.4%	51%

NOvA can provide a complementary measurement

- ~ 6x POT
- E_v (NOvA) has a narrow band peaked at ~2 GeV, while E_v (MINERvA) has a broad band averaged at 3.6 GeV

Event and Particle Identification

- NOvA implemented Convolutional Neural Networks (CNNs) to identify neutrino event and particle.
 - Convolutions are applied to pixel maps to extract features such as showers, tracks, vertex, etc.

A CNN is trained using single particle samples, rather than neutrino interaction samples, to identify electromagnetic showers.

- Binary classification for prongs:
 - Electromagnetic-like (EM-like) vs. non-EM-like

Wanwei Wu

$\overline{ u}_{\mu}$ CC π^0 Event Selection

- <u>Track-based cuts</u>: v_{μ}/\bar{v}_{μ} CC inclusive events
 - Preseletion: event quality, fiducial volume, containment
 - Muon likelihood score (MuonID)
 - Reconstructed muon kinetic energy

$\overline{\nu}_{\mu}$ CC π^0 Event Selection

Shower-based cuts:

5<u>×1</u>0`

Events

- Number of prongs (NProngs)
- Number of hits in the prong

- NC

Other

Prong CNN EM scores

0.2

Wanwei Wu

• Final state π^0 invariance mass cut:

$$m_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta_{\gamma\gamma})}$$

Template Fit

- A data-driven template fit has been developed to more accurately constrain background contributions and estimate signal events, which is performed in all π⁰ kinematic bins using templates from sidebands and signal region simultaneously.
 - Create templates across the sidebands and signal region
 - Two signal templates and four sideband templates for v_{μ}/\bar{v}_{μ} CC 0 π^0 and NC
 - Construct the covariance matrix

$$V = V_{stat} + V_{syst}$$

• Adjust the normalization of the templates through a fit to data by minimizing

$$\chi^{2} = (x_{i} - \mu_{i})^{T} V_{ij}^{-1} (x_{j} - \mu_{j})$$

- \circ x_i : data observable
- μ_i : prediction according to the variation of three normalization parameters (*a*, *b*, *c*) for each template π^0 kinematic bin

$$\mu_i = \boldsymbol{a_i} \times (N_{\mathrm{CC\,Prim\,}\pi^0,\,i} + N_{\mathrm{CC\,Seco\,}\pi^0,\,i}) + \boldsymbol{b_i} \times N_{\mathrm{CC\,}0\pi^0,\,i} + \boldsymbol{c_i} \times N_{\mathrm{NC},\,i} + N_{\mathrm{Other},\,i}$$

Templates

Signal Template (NProngs = 3)

Signal Template (NProngs > 3)

Template Fit

$\mu_i = \boldsymbol{a_i} \times (N_{\text{CC}\operatorname{Prim}\pi^0, i} + N_{\text{CC}\operatorname{Seco}\pi^0, i}) + \boldsymbol{b_i} \times N_{\text{CC}0\pi^0, i} + \boldsymbol{c_i} \times N_{\text{NC}, i} + N_{\text{Other}, i}$

- Closure test example from fake data (+1 σ MaCCRES and -1 σ MaNCRES)
 - Predicted parameter values is calculated from the ratio of fake data to mc nominal using corresponding components in the template samples

 We conducted a series of validations using various fake data sets, and all indicate that the template fit performs as expected. The single differential cross section calculation is expressed as

$$\left(\frac{d\sigma}{dx_{\pi^{0}}}\right)_{i} = \frac{\sum_{j} U_{ij}^{-1} \left(N_{\text{Sel}}(x_{\pi^{0}})_{j} - N_{\text{Bkgd}}(x_{\pi^{0}})_{j}\right)}{N_{t} \phi \,\epsilon(x_{\pi^{0}})_{i} \,\Delta x_{\pi^{0} i}}$$

- x_{π^0} : π^0 momentum or angle
- *N_{Sel}*: number of selected events
- N_{Bkgd} : number of estimated background events
- *U*: unfolding matrix
- N_t : number of nucleons in the target
- ϕ : integrated flux
- ϵ : efficiency
- *i*,*j*: bin index

Unfolding matrix (reconstructed to true migration)

Wanwei Wu

Systematic Uncertainties

- The rich statistics of data at the NOvA Near Detector enables the \bar{v}_{μ} CC π^{0} measurement to be a systematic-limited measurement.
- Major systematic sources come from the detector response (mainly from detector calibration),
 Neutrino-nucleus interaction modeling, flux, etc.

Conclusion

- The rich statistics of data at the NOvA Near Detector can be used to perform a measurement of \bar{v}_{μ} CC π^0 production in the resonance regime.
 - Differential cross-section measurement as a function of π^0 momentum and angle
- A CNN trained on single particle samples is used to identify the EM showers.
- A data-driven template fit has been developed to better constrain the background contributions and estimate the signal events.
- We're finalizing the systematics and preparing for the signal box opening.

Stay tuned. Thank you!

Backup

The following cuts are applied for event selection

- Preselection
 - **Event quality**: NHits in slice > 20 & NKalmanTracks in slice > 0 & NContiguousPlanes in slice > 4
 - Fiducial volume: Primary muon track start position/reconstructed event vertex satisfies (in [cm])
 -130 < x < 140, -130 < y < 140, and 100 < z < 1000
 - **Containment**: all reconstructed showers within the detector active region except for the primary muon track
 - Muon likelihood score (MuonID) (≥ 0.24)
- Reconstructed muon kinematic energy (ReconMuonKE) (≥ 0.4 GeV)
- Number of Prongs (Nprongs) (≥ 3)
- **Prong Number of Hits (NHits)**: Prong 1 NHits \geq 6 & Prong 2 NHits \geq 4
- **Prong CNN EM Scores**: Prong 1 CNN EM score ≥ 0.15 & Prong 2 CNN EM score ≥ 0.10
- Reconstructed π^0 Mass (PiOMass): 90 MeV \leq PiOMass < 190 MeV

$\overline{ u}_{\mu}$ CC π^0 Event Selection

Templates

 Motivated by the true W (invariant mass of hadronic system) distributions, the selected signal sample and sideband samples are split in two orthogonal subsamples with Number of Prongs (NProngs) = 3 and NProngs >3.

Templates

Fraction of signal and each background in the template sidebands and selected samples

	$\bar{ u}_{\mu}$ CC Primary π^{0}	$ u_{\mu}$ CC Primary π^{0}	$\bar{\nu}_{\mu}/\nu_{\mu} \text{CC}$ Secondary π^0	$\bar{ u}_{\mu}/ u_{\mu} ext{CC} \ 0\pi^0$	NC	Other	Total
CC0Pi0 EMLike NProngs $= 3$	25.6%	3.1%	22.7%	43.5%	3.5%	1.6%	100%
CC0Pi0 EMLike NProngs > 3	24.9%	7.2%	24.3%	30.8%	10.4%	2.3%	100%
CC0Pi0 LowScore NProngs $= 3$	14.7%	3.6%	15.1%	60.6%	4.1%	1.9%	100%
NC NProngs > 3	11.6%	27.8%	10.1%	2.9%	39.4%	8.1%	100%
Selected NProngs $= 3$	49.7%	5.3%	18.2%	21.8%	3.2%	1.8%	100%
Selected NProngs > 3	36.7%	10.7%	21.1%	18.2%	10.9%	2.4%	100%

Fake Data Fitting Results

