Work in collaboration with Thomas Steingasser and Sokratis Trifinopoulos

Small m_H^2 from Metastability **H Sean Benevedes** DPF-PHENO 2024

This talk in a slide

 $|m_H^2| \sim \Lambda^2$

Mystery: SM is not complete, expect additional UV scales Λ , why not as expected from QFT?

 Ω

Higgs coupling $\lambda(M_{\rm Pl})$

 -1

a) Why require vacuum metastability? Buttazzo et al. 1307.3536 Planck-scale dominated wijity 2.5 Top Yukawa coupling $y_t(M_{\rm Pl})$ 2.0 Instability Stability 1.5 1.0 0.5 **SM** No EW vacuum

 0.0

 -2

- Current measurements indicate that the SM is already metastable (Degrassi et al. 1205.6497), so in some sense this is the null hypothesis
- Some cosmological scenarios predict a metastable electroweak vacuum
	- Accessibility criterion (Khoury 1912.06706)
	- Self-organized localization (Giudice, McCullough, You 2105.08617)

Our philosophy: Assume metastability and see if it leads somewhere interesting

Anthropic argument: If it didn't lead somewhere interesting, I wouldn't be giving a talk about it

Electroweak vacuum metastability

• Classically: with $m_H^2 > 0$, the Higgs potential attains a minimum at α

 $\frac{2}{H}$ > 0, the Higgs potential attains a minimum at $H=0$

Electroweak vacuum metastability

- Classically: with $m_H^2 > 0$, the Higgs potential attains a minimum at α • Quantum mechanics: λ runs, $\beta_\lambda \neq 0$, possible to have multiple minima $\frac{2}{H}$ > 0, the Higgs potential attains a minimum at $H=0$
-

Electroweak vacuum metastability

- Classically: with $m_H^2 > 0$, the Higgs potential attains a minimum at α
- Quantum mechanics: λ runs, $\beta_\lambda \neq 0$, possible to have multiple minima
- When this happens, the classical minimum can be unstable to tunneling!

 $\frac{2}{H}$ > 0, the Higgs potential attains a minimum at $H=0$

Effective Potential

b) EFT assumptions

- 1. New physics comes in the UV at some scale Λ (with Wilson coefficient c_6)
- 2. The effects of UV physics on metastability can be parameterized by a dimension-6 operator (e.g. metastability doesn't arise due to an interplay of dimension-6 and dimension-8 terms)
	- This (plus metastability) implies both that $c_6 > 0$ and that λ crosses zero at some scale μ_I (about 10^{11} GeV in the Standard Model) μ_I (about 10^{11} GeV

$$
V(H) = \frac{1}{4}m_H^2H^2 + \frac{1}{4}\lambda H^4 + \frac{c_6}{\Lambda^2}H^6
$$

ШĦ

Metastability bounds from below

If $m_H^2 < 0$: $\left| \right| m_H^2$ μ_H^2 < $\mu_I^2 \beta \exp(-3/2) \equiv m_-^2$

(derived by Buttazzo et al. 1307.3536, receives corrections c.f. Khoury, Steingasser 2108.09315)

10 Sean Benevedes

Model building challenge: to bring these bounds closer to the electroweak scale, can we lower Λ and μ _{*I*} simultaneously without ruining metastability? (yes)

$$
-m_{-}^{2} \equiv \boxed{-\mu_{I}^{2} \beta \exp(-3/2) < m_{H}^{2} < \frac{\beta^{2} \Lambda^{2}}{48c_{6}} W_{-1} \left(\xi\right) \left(2 + W_{-1} \left(\xi\right)\right) \equiv m_{+}^{2}}
$$

- Intuition: lower μ_I from its SM value with new Yukawa couplings
- For simplicity, we will use TeV scale right-handed neutrinos (ask me about details if you're curious, same model as Khoury, Steingasser 2108.09315)
- Model characterized by two parameters, neutrino mass scale M and Yukawa coupling y_{ν}

 $\sqrt{|m_H^2|} < 1000$ TeV

 $\sqrt{|m_H^2|}$ < 100 TeV

 $\sqrt{|m_H^2|}$ < 10 TeV

Never metastable

Precision EW quoted from Chauhan,

Steingasser

2304.08542

Conclusion

- Requiring metastability, imposing conditions on the SM EFT, and fixing SM couplings to their observed values in the IR places bounds on m_H^2 from above and below *H*
- Bringing these bounds toward the electroweak scale requires new physics at $O(1 - 10$ TeV); this scenario can be probed at future colliders
- Things I left out (**SB**, Thomas Steingasser, Sokratis Trifinopoulos 2406.xxxxx)
	- What requirements on the parameters does the lifetime impose?
	- What about models besides RHNs?

EW precision bound quoted from Chauhan, Steingasser 2304.08542

$M = 1$ TeV split up

16 Sean Benevedes

SB, Thomas Steingasser, Sokratis Trifinopoulos 2406.xxxxx

SB, Thomas Steingasser,

W $= 1$ TeV combined

W $= 1$ TeV combined Sokratis Trifinopoulos 2406.xxxxx

EW precision bound quoted from Chauhan, **Steingasser** 2304.08542

17 Sean Benevedes

$$
\sqrt{|m_H^2|} < 10^5 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 10^4 \text{ TeV}
$$

 $\left|\sqrt{|m_H^2|} < 1000$ TeV

$$
\sqrt{|m_H^2|} < 100 \text{ TeV}
$$

Never metastable

M = 1 TeV projections

$$
\sqrt{|m_H^2|} < 10^5 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 10^4 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 1000 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 100 \text{ TeV}
$$

Never metastable

EW precision bound quoted from Chauhan, Steingasser 2304.08542

18 Sean Benevedes

FCC-ee bound from Antusch, Cazzato, Fischer 1612.02728

M = 1 TeV projections **SB**, Thomas Steingasser, Sokratis Trifinopoulos 2406.xxxxx

ш

$$
\sqrt{|m_H^2|} < 10^5 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 10^4 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 1000 \text{ TeV}
$$

$$
\sqrt{|m_H^2|} < 100 \text{ TeV}
$$

Never metastable

Low scale seesaw

- Naively, for observed neutrino masses, seesaw mechanism requires RHN mass scale *M* ≫ TeV
- However, this dimensional analysis can fail due to nontrivial matrix structure; can have RHNs that explain observed neutrino masses at low scales if we impose a modified lepton number symmetry (requires 3 RHNs)
- In this case, for the purposes of the electroweak vacuum, there are only two free parameters of the RHN model, the degenerate mass scale M and a parameter characterizing the Yukawa structure, which we take to be *yν*

