

Trackless Jet Vertexing and Timing using ML

Wen Han Chiu

Joint DPF - Phenomenology Symposium 2024

Based on: Ongoing work – WHC, Zhen Liu, Tong Shen 2109.01682 – WHC, Zhen Liu, Matthew Low, Lian Tao Wang

Why timing (for BSM)?

Why timing (for BSM)?

Timing prompt jets

Timing delayed jets

Timing delayed jets (cont.)

Questions

Questions

• Can we do even better?

Questions

- Can we do even better?
- If the location of the decay affects timing distributions, can we infer the decay location from timing distributions?

Network architecture

Adapted from Energy Flow Network (EFN)

Training sample (timing)

- 2000 idealized mono-jet events with an idealized 1 m radius cylindrical detector per configuration
 - x_T varied from 100 mm to 1 m with 100 mm steps
 - η_M and η_I independently varied from -2 to 2 with 0.2 steps
 - β_M held fixed at 0.38

ML timed jets

Training sample (vertexing)

- Idealized jets with an idealized cylindrical detector
 - x_T varied from 500 mm to 950 mm with 10 mm steps
 - η_M varied from -1 to 1 with 0.1 steps
 - β_M varied from 0.35 to 0.4 with 0.01 steps
 - η_I held fixed at 0

Vertexing

Vertexing

Vertexing (cont.)

Vertexing (cont.)

Summary

- Timing is a valuable observable when searching for decays of LLPs
- The notion of timing can be extended to jets with many subtleties related to the kinematic configuration of the parent particle-jet system
- These details can be learned by a machine, giving both an improved notion of jet time and information of the production vertex

Backup Slides

Timing delayed jets (cont.)

- Goal: Tell the machine that only β_M has changed without penalizing certain configurations
- $t_i t_{p_T}$ is the same for both configurations
- Needs $t_{\rm norm}$ to NOT be an actual measured time