# Using IceCube Data to Constrain Neutrino Self-Interactions

Sabrina Hanning

With Jeffrey Hyde



## **Neutrino Self-Interactions**

- BSM  $\vee$  SI
  - Scalar mediator,  $\phi$  with mass m<sub> $\phi$ </sub>
  - Coupling constant, g
- SM mediated by Z boson, low cross-section







# High-Energy Neutrino Sources

- Jets of AGNs, blazars
- In particular:
  - TXS 0506-056 (blazar) (z=0.3365)
  - NGC 1068 (AGN) (z=0.004)
  - Diffuse background flux



## Source Modelling



# **Propagation Modelling**

- Scattering off of CvB at a rate  $\Gamma$ 
  - $\Gamma$  proportional to  $\sigma$ , n<sub>v</sub>
  - Neutrinos scattered to lower energies
- τ-τ/diagonal interactions
- $\quad \frac{d\Phi}{dt}(t) = -\Gamma(E)\Phi(t)$



Modelled flux of  $v_e^{}, v_\mu^{}, v_\tau^{}$  with  $\gamma$ =2.53, z=0.337, g=0.01, m<sub>p</sub>=0.01 GeV assuming only  $\tau$ - $\tau$  interactions

## v SI Cross-Section

$$\sigma_{ijkl} = \frac{(\hbar c)^2 |g_{ij}|^2 |g_{kl}|^2}{4\pi} \frac{s_j}{[s_j - m_{\phi}^2]^2 + (m_{\phi} \Gamma_{\phi})^2}$$

- Breit-Wigner form
- Resonant energy:  $E_R = \frac{m_{\phi}^2}{2m_{\nu}}$
- s<sub>i</sub> is the mandelstam parameter
- $\Gamma_{\phi} = (\sum_{ij} |g_{ij}|^2) rac{m_{\phi}}{4\pi}$  is the decay width

# Propagation Modelling cont.

- Other considerations:
  - Mass vs. Flavor basis
  - Neutrino decoherence
    - 2:4:1 (π decay) to 1:1:1
  - Energy redshifting;  $E=(1+z_s)E_0$
  - Background density redshifting:  $n_{0v} = (1+z)^{-3}n_v$

- Neutrino-Nucleon CC Interactions
- Track vs. Cascade events
  - Track have better angular resolution
  - Cascade have better energy resolution



# IceCube Detection Modelling

- $\frac{dN}{dE} = \Phi(E)A_{eff}(E)t$ 
  - Track events detect v
  - A<sub>eff</sub> from IceCube





# **Statistical Analysis**

- Look for dips in detected energy spectrum
- Likelihood ratio test:  $\lambda = 2 \log \left( \frac{\mathcal{L}_{H1}}{\mathcal{L}_{H0}} \right)$ 
  - $H_0$  with g=0 and  $n_s$  and  $\gamma$  maximized for likelihood
  - $H_1$  with SI, fit g,  $m_{\phi}^{}$ ,  $n_{s}^{}$ ,  $\gamma$
  - $\quad \lambda \stackrel{\sim}{} \chi^2$

$$\mathcal{L}(\{x_i\}|\{\theta_i\}) = \prod_{i=1}^{N'} \left[\frac{n_s}{N} f_{\text{signal}}(x_i|\theta_i) + \left(1 - \frac{n_s}{N}\right) f_{\text{background}}(x_i)\right]$$

### Statistical Analysis cont.

$$\mathcal{L}(\{x_i\}|\{\theta_i\}) = \prod_{i=1}^{N'} \left[\frac{n_s}{N} f_{\text{signal}}(x_i|\theta_i) + \left(1 - \frac{n_s}{N}\right) f_{\text{background}}(x_i)\right]$$
$$f_{\text{signal}} = \frac{1}{2\pi \sin(\hat{\psi})} f_{\text{energy}}(E_{\mu}|sin\delta, \gamma, \mu_{ns}, m_{\phi}, g) f_{\text{spatial}}(\psi_i|E, \sigma, sin\delta, \gamma)$$
$$f_{\text{energy}}(\hat{\epsilon}_{\mu}|\gamma, g, m_{\phi}) = N^{-1} \int d\epsilon_{\nu} P_{\text{prop.}}(\hat{\epsilon}_{\mu}|\epsilon_{\nu}) P_{\text{int.}}(\epsilon_{\nu}|\gamma, g, m_{\phi})$$

Probability that an event is signal vs. background

Spatial and energy components

Detection and propagation components

## Statistical Analysis cont.

- We modify the energy pdf to account for v self-interactions
- Compare red line to black line



## **Current Constraints**



(Hyde '23)

### Preliminary constraints from this analysis



- Maximized with low significance at log(g)=-1.8, log( $m_{\phi}$ )= 0.4 (2.5 MeV)

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)