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Motivations

The neutron structure

@ We have entered the precision era for the proton structure 20313023

@ How about the neutron?

@ Isospin-symmetry to relate the neutron’s quark-gluon PDFs.

@ To what precision this isospin symmetry is preserved?

@ Many isospin symmetry violation sources: QED interaction, nuclear effects.
Phenomenological relevance

o Nucleus scattering

@ Neutrino-nucleus scattering: W production

@ Photon initiated processes: photonic Axion-like particle production
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Recall the proton’s photon PDFs

The first generation
o MRST2004QED (oa10e9 models the photon PDF with an effective mass scale.

o NNPDF23QED psusosess and NNPDF3.0QED 11410849 constrains photon PDF with the LHC Drell-Yan
data, qg,yy — 4~

o CT1l4qed_inc fits the inelastic ZEUS ep — ey+ X data pswoos;, and include elastic component as well.
The second generation

o LUXqed directly takes the structure functions F 1,(z, Q?) to constrain photon PDF uncertainty down
to percent level [1607.04266,1708.01256]

o NNPDF3.1luxged pmomsy initializes photon PDF with LUX formula at po =100 GeV (a high scale)
and evolves DGLAP equation both upwardly and downwardly.

o MMHT2015qed nooroxso initializes photon at red g =1 GeV (a low scale) and evolve DGLAP
upwardly. It's updated as MSHT20qged by the recent fit 21110357

@ CT18qed ps0s.10733 incorporates the LUX formalism with the CT18 joi210053 global analysis.
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The LUX formalism

@ The DIS process: ep — e+ X

0)

+ax; o 4

~ (0
g~ L;WH/W ~ FZ,L g~ f’)’géﬁw

@ Matching these two approaches leads to the LUX master formula psor.oss6 1708 01256
9 1 1dz 1= d4Q? , 9 2z m?
zy(z,u ):W/z - /ﬂmg ?O‘ph(*Q ) Zpyq(z)+7 X

Z I-z

Falo/2 Q%) — 22F (a2, QQ)} a%ﬁ)z?&(z/m)}.

The square bracket term corresponds to the “physical factorization” scheme, while the second term is
referred as the “MS-conversion” term.

@ The structure functions Fj j, can be directly measured, or calculated through pQCD in the
high-energy regime.
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Breakup of (z, %) plane Lot High ©Q* continuum (pQCD)

Low @Q? continuum

100t (HERMES GD-11P/D)
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@ In the resonance region W2 =m2+ Q?*(1/z—1) < W2 =3 GeV?, the structure functions are taken
from CLAS {os01204 OF ChriSty—BOSted (7123731 fits.
@ In the low-Q? continuum region W2 > Wth =4 GeV?, the HERMES GD11-P possroq fits with ALLM
pLeiooy) functional form.
o In the high-Q? region (Q? > QI%DF), Fjy 1, are determined through pQCD.
@ The elastic form factors are taken from Al [zo7.62271 or Ye pror.o00e3 fits of world data.
All these ingredients can be applied to neutron as well.
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Electromagnetic form factors
o Galster parameterization esion

A
GR(QY) = ——

- 1+ Bt

Gp(Q%), Gp(Q*) =1/(1+ Q*/A%)?,

where [Kelly, PRC2004]

A=1.704+0.04, B=3.30£0.32
@ Modern fit from world electron scattering data: Extracted from nuclei (e.g., D, He) e etat, 1707.050631
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Elastic photon
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z
o Neutron's elastic photon mainly comes from the magnetic form factor G
o Consistent with the zero electric charge
@ MSHT20qed integrate elastic form factor up to 1 GeV and then evolve to high scale.
@ We take the complete integration to Q2 — oo, while scale dependence comes from the running

coupling a(u?).
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In comparison proton’s elastic photon
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@ In comparison, the proton’s elastic photon is consistent with each other, except at large = due to the
numerical interpolation issue.

@ The proton's low-z elastic photon mainly comes from the Gg, while large-z from Gj;.
@ The elastic photon decrease with scale, due to a(u?) running.
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Neutron non-perturbative structure functions
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A smooth transitign

1 Q*(1-1)
Fo= g 1+4z2m2/Q2 OT+L

@ At moderate z,
HERMES can match
pQCD very well.

@ Large uncertainty for
HERMES low-z
extrapolation

@ Extreme z transit to
the resonance region
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Inelastic photon
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@ The inelastic photon dominates.

o Elastic photon (mainly from Gjs) only become relevant at very large z(= 0.2)
@ Inelastic photon evolves very fast
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Non-perturbative uncertainties
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@ The resonance variation dominates at low Q?

@ The low-Q? non-perturbative uncertainty dies out with increasing scale, while pQCD (¢, g PDF)
uncertainty increase.

@ Non-perturbative uncertainties remain at large x
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In comparison with proton
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@ The proton’s photon PDF uncertainty is about 1% level.

@ The neutron's photon is (2 ~4)% in the moderate-z region.

@ A significant improvement in comparison with the 1st generation of photon PDFs.
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. N Inspired by MSHT20qed . .
Isospin symmetry violation P Ao daa (el (o u) i (2. 412)

o Model the initial isospin violation with QED interaction B fdm(%ug?fm(z,#g)*Bd(VC?fD)(my#g))

€3 ED
Ady o (2,45) = dv n(2,45) — wy p(,45) = € (1 - e—‘é) WP (1),

es ED
Auy o (2,13) = uy o (2, 43) — dy (2, u3) =€ (1 - e—2> AP (2, ud).
d

@ The € parameter can be self-consistently determined through sum rules.
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LUX vs DGLAP

@ CT18lux: directly calculate the photon PDF with the LUX formalism

o CT18qed: initialize the inelastic photon PDF with the LUX formalism at low scales, and evolve the
QEDNLo®QCDNNLo DGLAP equations up to high scales, similar to MMHT2015qed /MSHT20qed.

o CT18qed gives larger low-z photon due the evolution: [dlogu? £ Y, e2zPy, ® zq ~ F3'© > FINLO
@ Photon radiation take away the quark fraction at large .
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CT18ged uncertainties

Ratio
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@ Uncertainty consistent with the CT18lux
@ The resonance uncertainty slightly increases, while the low-Q? non-perturbative uncertainty improves.
@ The iso-spin symmetry violation effect on the photon PDF as well as the momentum sum rule is

minimal.
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In comnarlson with other PDFs
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@ Similarly to the
proton case,
CT18qed
consistent with
MSHT20qed at
moderate x

Low-z photon is
driven by the
charge weighted
singlet X,

The large-z is
driven by both
Y. and non-
perturbative
treatment.

Improvement
with respect to
1st generation,;



W boson production in v-A scattering
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@ W-boson production can be measured at in high-energy neutrino telescopes, e.g., lceCube, KM3NET,
as well as collider, i.e., FASER and future FPFs

@ Our photon PDF directly contributes to the photon-initiated sub-process

@ The photon PDF uncertainty is reduced to a percent level.
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Axion-like particle production
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@ A similar mechanism applies to photonic Axion-like particle production.
@ For simplicity, we demonstrate it with the muon beam dump experiment
E, =15 TeV, /s =/2E,my =53 GeV.

@ Many PDF features remain the same.
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Conclusion CT18qed is available: http://cteqg-tea.gitlab.io/project/00pdfs/
@ The neutron’s photon content can be precisely determined by mapping the structure functions to the
PDF, the LUXqed formalism.
@ The elastic photon comes from the electromagnetic form factors.
@ The inelastic component comes from inelastic structure functions.

o We divide the (z, Q?) into three regions: the resonance, low-Q? continuum, and high- Q2 pQCD
regions.

@ Similarly to the proton case, we explored two methods, LUX vs DGLAP, which give CT18lux and
CT18qed, respectively. Both are consistent with each other.

@ The photon PDF precision is significantly improved, with respect to the 1st generation PDFs.

o CT18qed is consistent with MHST20qed in the moderate-z region. Discrepancies were found in the
low-z and large-z regions, driven by the corresponding charge-weighted singlet as well as
non-perturbative treatments.

@ Phenomenological implications explored with the W-boson production in the v A scattering and the
photonic ALP production.

@ Some future directions can be continued, such as nuclear corrections.
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