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Goal of Anomaly Detection in Collider Physics
★ Trying to find evidence of BSM events(aka. anomalies) in collisions

Outliers: Trying to identify events that 
emerge in some unexpected region. 

Over-densities: Trying to identify region 
of events that are abnormally dense.

Generally a harder problem

● State-of-the-art machine learning 
algorithm: Autoencoders
○ Learn to minimize 

reconstruction loss on 
background data

○ Anomalies are expected to 
have higher reconstruction 
losses while testing

● Fast to evaluate but not very 
interpretable

● Can cost a lot of computational 
resources for large network

● Lots of interesting work has gone 
into improving them[1][2]

[1] E. Govorkova, et al. “Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider” (2021)
[2] Javier Duarte et al., "Fast inference of deep neural networks in FPGAs for particle physics" (2018)
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Optimal Transport in particle physics

● OT provides a natural and rigorous definition of distance 

between events

● First introduced by Ref[1]

● Used in LHC classification tasks[2][3]

○ Typically on jet constituent data

○ Either on its own or combined with machine learning

● Also has been used for anomaly detection task[4][5](also, 

mostly on jet constituent data)

○ Relatively under-explored

[1] Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler, "The Metric Space of Collider Events", Phys. Rev. Lett. 123, 041801, (2019)
[2] P. T. Komiske, E. M. Metodiev and J. Thaler, “The Hidden Geometry of Particle Collisions.” JHEP 07, 006 (2020)
[3] T. Cai, J. Cheng, K. Craig and N. Craig. “Which metric on the space of collider events?” Phys. Rev. D 105(7), 076003 (2022)
[4] K. Fraser, S. Homiller, R. K. Mishra, B. Ostdiek and M. D. Schwartz. “Challenges for unsupervised anomaly detection in particle 
physics.” JHEP 03, 066 (2022)
[5] S. E. Park, P. Harris and B. Ostdiek. “Neural embedding: learning the embedding of the manifold of physics data.” JHEP 07, 108 
(2023)
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Dataset
Using the ADC 2021 dataset[1]

Jessica Howard

[1] E. Govorkova et al., LHC physics dataset for unsupervised New Physics detection at 40 MHz. Sci. Data 9, 118 (2022), 
doi: 10.1038/s41597-022-01187-8, arXiv:2107.02157.

● Coarse-grained L1 trigger-level data

● Goal: 
○ Train on SM background data 

to learn the distribution
○ Test on BSM signal data and 

(hopefully) see good 
performances on all signal 
cases
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1. Randomly choose a set of background 
events as reference events         BKGref

2. For each test event T, compute the OT 
distance to BKGref and get the 
minimum        Anomaly Score of T

Jessica Howard
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OT as anomaly score
Procedure: 

1. Randomly choose a set of background 
events as reference events         BKGref

2. For each test event T, compute the OT 
distance to BKGref and get the 
minimum        Anomaly Score of T

Advantage:
● Fully interpretable
● No training needed, purely based on 

the distinguishability of OT

Potential disadvantage:
● Some SM events may be further 

apart in OT distance than SM and 
BSM events

● Didn’t take into account of 
symmetries of the problem

Jessica Howard
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Results

Raw Autoencoder Result from [1]

[1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn.  “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660

Signal Efficiency (TPR)

B
ac

kg
ro

un
d 

R
ej

ec
tio

n 
(T

N
R

)



07/09

Hancheng Li

Results

Raw Autoencoder Result from [1]

● Choice of ground space is essential
● In the 3D case, OT is approaching the performance of 

raw autoencoders

[1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn.  “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660

Signal Efficiency (TPR)
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OT + Machine Learning

[1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn.  “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660

● anomaly-kNN is kNN trained on background data + anomaly augmented background data[1] (to imitate the 
distribution of signal dataset)

● One-class SVM is an unsupervised learning algorithm that trains on background data only to learn its distribution
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OT + Machine Learning

● 3D OT generally does better than OT + simple ML algorithms!

[1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn.  “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660

● anomaly-kNN is kNN trained on background data + anomaly augmented background data[1] (to imitate the 
distribution of signal dataset)

● One-class SVM is an unsupervised learning algorithm that trains on background data only to learn its distribution
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Conclusion and future work
➢ OT is a promising method for anomaly detection, both as a plain metric and combined 

with machine learning algorithms

○ Choice of ground space is essential

○ Already give decent results and still has plenty of room for improvement:

■ Symmetries in particles collisions    Gromov-Wasserstein distance[1]

■ There is more information collected by the detector that we can added to our 

ground space(e.g charge and particle species)      Multi-species OT[2]

■ Computational Feasibility     Linearized Optimal Transport[3]

[1] Planned follow-up work with N. Craig and J. Howard
[2] Ongoing work with T. Cai, K. Craig, N. Craig, and J. Howard
[3] T. Cai, J. Cheng, K. Craig, N. Craig. “Linearized Optimal Transport for Collider Events”. Phys. Rev. D 102, 116019 (2020). arXiv: 2008.08604
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OT + Machine Learning (Classification)

Jessica Howard

● Possible reasons why OT + Simple ML algorithms 
for anomaly detection doesn’t do very well:
○ Anomaly-augmented dataset cannot imitate 

the distribution of signal dataset perfectly
○ One-class SVM is known to have issues 

with complex datasets where anomalies can 
form dense clusters
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Anomaly augmented background data
This is the background anomaly augmentation scheme used in paper, defined by [1]

[1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn.  “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660
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Advantage of OT 

Example from [1]

[1] Arjovsky et al., ICML 2017. “Wasserstein Generative Adversarial Network”
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