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Goal of Anomaly Detection in Collider Physics

% Trying to find evidence of BSM events(aka. anomalies) in collisions
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Outliers: Trying to identify events that Over-densities: Trying to identify region
emerge in some unexpected region. of events that are abnormally dense.
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Goal of Anomaly Detection in Collider Physics

% Trying to find evidence of BSM events(aka. anomalies) in collisions

State-of-the-art machine learning
algorithm: Autoencoders
o  Learn to minimize
e ' reconstruction loss on
/ background data

' o  Anomalies are expected to
have higher reconstruction
losses while testing

e Fast to evaluate but not very

f interpretable

e (Can cost a lot of computational

) - resources for large network

e [ots of interesting work has gone

into improving them!!/?!

Outliers: Trying to identify events that Over-densities: Trying to identify region
emerge in some unexpected region. of events that are abnormally dense.

Generally a harder pr(;blgm

<P HYS | o IC S> [1] E. Govorkova, et al. “Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider” (2021) ujic
e [2] Javier Duarte et al., "Fast inference of deep neural networks in FPGAs for particle physics" (2018) S b
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Possible alternative: Optimal Transport

> What is Optimal Transport?
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Possible alternative: Optimal Transport

> What is Optimal Transport?
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Possible alternative: Optimal Transport

> What is Optimal Transport?
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Optimal Transport in particle physics




Optimal Transport in particle physics

e OT provides a natural and rigorous definition of distance
between events
e  First introduced by Ref!!!

e Used in LHC classification tasks!?I*]

o  Typically on jet constituent data
o  Either on its own or combined with machine learning
e Also has been used for anomaly detection task!*®)(also,
mostly on jet constituent data)

o Relatively under-explored

[1] Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler, "The Metric Space of Collider Events", Phys. Rev. Lett. 123, 041801, (2019)
[2] P. T. Komiske, E. M. Metodiev and J. Thaler, “The Hidden Geometry of Particle Collisions.” JHEP 07, 006 (2020)

[3] T. Cai, J. Cheng, K. Craig and N. Craig. “Which metric on the space of collider events?” Phys. Rev. D 105(7), 076003 (2022)

[4] K. Fraser, S. Homiller, R. K. Mishra, B. Ostdiek and M. D. Schwartz. “Challenges for unsupervised anomaly detection in particle

physics.” JHEP 03, 066 (2022) ulle
e [51S. E. Park, P. Harris and B. Ostdiek. “Neural embedding: learning the embedding of the manifold of physics data.” JHEP 07, 108
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Dataset

SM Background: 4,000,000 events

Using the ADC 2021 dataset!!]

(59.2%) pp — W= +jets — I*y, + jets
(6.7%) pp — Z + jets — It]~ + jets

e M Event = (19,3); zero-padded ®

Coarse-grained L1 trigger-level data

4 BSM Signal cases Pt n ¢
MET e Qoal:
mSIS0IGeVE P S A XS ZZE S X 2R S BT o Train on SM background data
4ely to learn the distribution
o  Test on BSM signal data and
(hopefully) see good

Charged scalar h*: 760,272 events 10 jet erformances on all sienal
m.=60GeV pp—>h*+X->wv+X p g
cases

Scalar boson /": 691,283 events
my = 60 GeV pp > +X >t +X 4”

Leptoquark (LQ): 340,544 events
my=80GeV pp—>LQ—>1b

Jessica Howard

[1]7 E. Govorkova et al., LHC physics dataset for unsupervised New Physics detection at 40 MHz. Sci. Data 9, 118 (2022),

uf|C
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Choice of Ground Space

2D Ground Space: (7, @)
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Choice of Ground Space
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OT as anomaly score

Procedure:

1. Randomly choose a set of background
events as reference events — BKGM »

2. For each test event T, compute the OT
distance to BKG > and get the
minimum —-Anomaly Score of T

mmm W; Anomaly Score ( normal event )
= W; Anomaly Score ( anomalous event)

<P HYS | J IC S> 2-Wasserstein Anomaly Score ( event )
v Jessica Howard
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OT as anomaly score

Procedure:
1. Randomly choose a set of background Advantage:
events as reference events — BKG . e Fully interpretable

e No training needed, purely based on

2. For each test event T, compute the OT the distinguishability of OT

distance to BKG_,and get th 1 di
istance to ror a0 get the Potential disadvantage:

minimym —-Anomaly Score of T e Some SM events may be further

e apart in OT distance than SM and

= W2 Anomaly Score ( anomalous event ) BSM eVentS

e Didn’t take into account of
symmetries of the problem

uf|C
Jessica Howar S b
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Results

Background Rejection (TNR)

2D OT, AUC: 0.6544 £+ 0.01119 | |2D OT, AUC: 0.6151 4+ 0.00791 \ |[2D OT, AUC: 0.6392 + 0.00282 2D OT, AUC: 0.6577 4+ 0.00899
03D OT, AUC: 0.837 £ 0.00875 3D OT, AUC: 0.7418 + 0.00821 3D OT, AUC: 0.9129 £ 0.00580 3D OT, AUC: 0.841 £ 0.00710

0 10 10 10 i
Signal Efficiency (TPR)

Raw Autoencoder Result from !
A 0.885%0.002
K  0.755 £ 0.002
hT  0.900 £ 0.004
LO 0.856 £ 0.002
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<P HYS | ‘;Z IC S> [1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn. “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660 { } Lﬁ}
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Raw Autoencoder Result from [

A 0.885%0.002
0.755 = 0.002
0.900 = 0.004

hO

AUC h +

10
Signal Efficiency (TPR)

raw autoencoders

LO 0.856 = 0.002

10 1

e Choice of ground space is essential
e In the 3D case, OT is approaching the performance of

<P HYS | ‘;Z IC S> [1] B.M. Dillon, L. Favaro, F. Feiden, T. Modak, T. Plehn. “Anomalies, Representations, and Self-Supervision.” arXiv: 2301.04660
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OT + Machine Learning

e anomaly-kNN is kNN trained on background data + anomaly augmented background datal!! (to imitate the
distribution of signal dataset)
® One-class SVM is an unsupervised learning algorithm that trains on background data only to learn its distribution
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OT + Machine Learning

e anomaly-kNN is kNN trained on background data + anomaly augmented background datal!! (to imitate the
distribution of signal dataset)

® One-class SVM is an unsupervised learning algorithm that trains on background data only to learn its distribution

A Ko

LQO

Background Rejection (TNR)

3D OT, AUC: 0.837 £ 0.00875 | |[3D OT, AUC: 0.7418 + 0.00821 ‘ 3D OT, AUC: 0.9129 + 0.00580 3D OT, AUC: 0.841 + 0.00710
3D OT + One-Class SVM: 0.768+0.006] |[3D OT + Omne-Class SVM: 0.662+0.00 3D OT + One-Class SVM: 0.8104+0.008 3D OT + One-Class SVM: 0.73940.014
3D OT + anomaly kNN: 0.832+0.006| |3D OT + anomaly kNN: 0.686+0.006 3D OT + anomaly kNN: 0.813+0.007 3D OT + anomaly kNN: 0.75740.008

0 10 1.0 10 1

Signal Efficiency (TPR)

e 3D OT generally does better than OT + simple ML algorithms!
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Conclusion and future work
> OT is a promising method for anomaly detection, both as a plain metric and combined

with machine learning algorithms
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m  Symmetries in particles collisions Gromov-Wasserstein distance!!

[1] Planned follow-up work with N. Craig and J. Howard
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> OT is a promising method for anomaly detection, both as a plain metric and combined
with machine learning algorithms
o Choice of ground space is essential
o Already give decent results and still has plenty of room for improvement:
m Symmetries in particles collisions Gromov-Wasserstein distance!!
m There is more information collected by the detector that we can added to our

ground space(e.g charge and particle species) Multi-species OT!?]
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Conclusion and future work
> OT is a promising method for anomaly detection, both as a plain metric and combined
with machine learning algorithms

o Choice of ground space is essential

o Already give decent results and still has plenty of room for improvement:
m Symmetries in particles collisions Gromov-Wasserstein distance!!
m There is more information collected by the detector that we can added to our

ground space(e.g charge and particle species) Multi-species OT!?]

m Computational Feasibility Linearized Optimal Transport"!

[1] Planned follow-up work with N. Craig and J. Howard

[2] Ongoing work with T. Cai, K. Craig, N. Craig, and J. Howard ullc
<P HY S|:.<;Z?'l:' IC S> [3] T. Cai, J. Cheng, K. Craig, N. Craig. “Linearized Optimal Transport for Collider Events”. Phys. Rev. D 102, 116019 (2020). arXiv: 2008.08604 b
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OT + Machine Learning (Classification)

mmm W; Anomaly Score ( normal event )
=== W; Anomaly Score ( anomalous event )

Only signal
on this side
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2-Wasserstein Anomaly Score ( event )

mmm W, Anomaly Score ( normal event )
mmm W; Anomaly Score ( anomalous event )

2-Wasserstein Anomaly Score ( event )
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2D

0.6948 £ 0.01795
0.6698 £0.01178
0.8103 £0.01673
0.7906 £ 0.02531

2D planed total p; [GeV]

pr € (50, 100)

0.7974 £ 0.008994
0.6761 £ 0.03569
0.6071 = 0.02694
0.7469 + 0.02149

pr € (500, 1000)

0.7989 £ 0.02231
0.5829 £ 0.02124
0.6203 £ 0.03418
0.5285 £ 0.01536

Possible reasons why OT + Simple ML algorithms
for anomaly detection doesn’t do very well:

©  Anomaly-augmented dataset cannot imitate

the distribution of signal dataset perfectly

o One-class SVM is known to have issues

with complex datasets where anomalies can

form dense clusters

01/03

3D

0.9021 * 0.01426
0.7713 £ 0.01814
0.9198 + 0.006547
0.8766 * 0.01415

3D OT

0.8370 = 0.008752
0.7418 £ 0.008213
0.9129 £ 0.005798
0.8410 £ 0.007098
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Anomaly augmented background data

This is the background anomaly augmentation scheme used in paper, defined by [!!

1. Multiplicity increase: This transformation randomly adds some number of e/y, u, and
jets to each event in the range (n,/,,4—n.,), (N, 4—n,), (Njers, 10— Ny, ), respectively.
The p; of each new particle is a randomly chosen fraction of the highest p; of any object
in that event added to the base required by that object’s selection criteria. The 7, ¢ of
each object are uniformly chosen within the allowed limits corresponding to that object’s
type. After all objects are added, the MET of the event is recalculated.

2. Multiplicity increase, with constant MET and p;: This transformation keeps the total
pr and MET constant while still increasing the overall object multiplicity. This is achieved
by splitting an existing object to create two new objects. The combined p of the two
new objects is equal to the original. The 7, ¢ of each new object are then randomly
smeared with Gaussian noise.

3. MET and py shift: This transformation randomly shifts the a) MET, b) reconstructed
object pr, or ¢) both by a constant multiplicative factor. Transformations (a),(b),(c)
are chosen with equal probability. To satisfy selection criteria, the multiplicative factor
for shifting py is chosen uniformly in the range [1,5) (i.e. the p; of objects will never
be down-shifted such that it might violate an object’s minimum p- criteria). No such
restriction exists for MET, so its multiplicative factor is chosen uniformly in the range
[0.5,5).

In general, we apply augmentations (1), (2), and (3) with equal probability. However, there
are certain events for which augmentation (2) could not transform the event without causing
the event selection criteria to be violated (approximately 8%). For these events, we instead
apply augmentations (1) and (3) with equal probability. Taking this into account, approxi-
mately 37.3%, 29.3%, 37.3% of events are transformed with augmentations (1), (2), and (3),
respectively.
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Advantage of OT

too  if0#0

KL@MWMZ:{O if =0

log 2 if0 #0
JSW@PQ::{O if0 =0

W (Po,Pg) = |0

Example from [ g
uj|C
<P HYS | <;Z IC S> [1] Arjovsky et al., ICML 2017. “Wasserstein Generative Adversarial Network” s|lb
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