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• Polarization 
measurements have been 
made1 and will improve

Polarized: 
probes chiral 
NP structure

• No current bounds
Predicted2 to be 

measured at 
future colliders

• Conditioned onAdditional 
observable:  

𝐴𝐴𝐹𝐹𝐹𝐹  

Conclusion: Soap from Friend!
bud to sud

1Buskulic et al.: 10.1016/0370-2693(95)01433-0
2Amhis, Kenzie, Reboud, Wiederhold: 2309.11353
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◦ Correlate initial spin and       momentum

◦ Produce observables in different frames

◦ Propagate input uncertainties: prediction uncertainty (simulation)

◦ Compute an NP double differential decay rate:

◦ Evaluate the bound on               
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Lab Frame

◦ Observed:          distribution

◦ Assumption: Initial        energy 
reconstruction

◦ Differential width dependence on  

◦ Non-trivial kinematic limits

◦ Obtain observable distributions 
dependent on initial energy 
distribution

Rest Frame

◦ Observed: Channel Decay Rate, 

◦ Assumption:        axis reconstruction

◦ Momentum gives us the spin 
quantization axis for

◦ Reconstruction uncertainty and 
propagation (hadronics enter here)
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Form Factors 

◦ Hadronic        :  non-perturbative

◦ Form factors1 approximate 

◦  Depends on di-neutrino mass
◦  

◦ Only vector and axial elements used

◦ Couples to neutrinos – scalar and tensor 
elements ignored

1Detmold, Meinel: 1602.01399



FORMING A PICTURE
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Uncertainties in the SM Prediction

◦ Form Factors

◦ Second order expansion

◦ CKM Uncertainties

◦ Dominated by

◦ Unitarity used to obtain tree-level 
determinations

◦ Top mass, higher order QCD and EW 
enter through the SM value of 

◦ Uncertainty in the lifetime propagates 
into the branching fraction

1Brod, Gorbahn, Stamou: 1009.0947
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New Physics Sensitivity

◦ Interpretation:

◦ Green: Branching Ratio Constraints
◦                     contours displayed

◦ Dashed: 

◦  

◦ Combines experimental uncertainty 
projections with theory error

◦            and branching ratio offer great 
complementarity
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QUESTIONS?

Thanks for 
attending!
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