HEAVY NEW PHYSICS IN $b \rightarrow s \nu \nu$

W. Altmannshofer, S.A.G, K. Toner arXiv: 2406.xxxxx

Aditya Gadam

Theoretical

Experimental

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)

 \circ

 \circ

Theoretical

Experimental

- GIM and CKM suppression makes these
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \to s\ell^+\ell^-$

 \circ

Theoretical

Experimental

- GIM and CKM suppression makes these
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than
- Complementary NP information to the above and clean ratios of branching fractions

Theoretical

Experimental

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \rightarrow s \ell^+ \ell^-$
- Complementary NP information to the above and clean ratios of branching fractions

◦ Good missing energy detection

Theoretical

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \rightarrow s \ell^+ \ell^-$
- Complementary NP information to the above and clean ratios of branching fractions

Experimental

- Good missing energy detection
- \circ Future e^+e^- colldiers = excellent probe: $10^{12} Z$ events at the Z pole¹

1Alimena et al.: 2203.05502

Theoretical

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \rightarrow s \ell^+ \ell^-$
- Complementary NP information to the above and clean ratios of branching fractions

Experimental

- Good missing energy detection
- \bullet Future e^+e^- colldiers = excellent probe:
	- Currently only weakly probed through meson decays

1Alimena et al.: 2203.05502

Theoretical

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \rightarrow s \ell^+ \ell^-$
- Complementary NP information to the above and clean ratios of branching fractions

Experimental

- Good missing energy detection
- \bullet Future e^+e^- colldiers = excellent probe:
	- Currently only weakly probed through
	- No polarization chiral information is yet to be probed

1Alimena et al.: 2203.05502

Theoretical

- GIM and CKM suppression makes these decays of *b* quarks rare
- Sensitive probes of New Physics (NP)
- Cleaner theoretical predictions than for $b \rightarrow s \ell^+ \ell^-$
- Complementary NP information to the above and clean ratios of branching fractions

Experimental

- Good missing energy detection
- \circ Future e^+e^- colldiers = excellent probe: $10^{12} Z$ events at the Z pole¹
	- Currently only weakly probed through meson decays
	- No polarization chiral information is yet to be probed
	- Polarization can be measured passes to fermionic children

The Framework: $\Lambda_b \to \Lambda \nu \bar{\nu}$

◦ Compute double differential decay rate of the Standard Model process

- Polarized initial state (sample fraction)
- $\,\circ\,$ Correlate initial spin and Λ momentum

$$
\mathcal{P}_{\Lambda_b} = \frac{N_{\Lambda_b}^{\uparrow} - N_{\Lambda_b}^{\downarrow}}{N_{\Lambda_b}^{\uparrow} + N_{\Lambda_b}^{\downarrow}}
$$

The Framework: $\Lambda_b \to \Lambda \nu \bar{\nu}$

◦ Compute double differential decay rate of the Standard Model process

- Polarized initial state (sample fraction)
- \bullet Correlate initial spin and Λ momentum
- Produce observables in different frames

$$
\frac{d\text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{dq^2 d\cos\theta_\Lambda} = \frac{d\text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{dq^2} \left(\frac{1}{2} + A_{\text{FB}}^\uparrow \cos\theta_\Lambda\right)
$$

The Framework: $\Lambda_b\to\Lambda\nu\bar{\nu}$

◦ Compute double differential decay rate of the Standard Model process

- \bullet Polarized initial state (sample fraction) $\overline{\mathcal{P}}_{\Lambda} = \frac{\overline{\Lambda} b}{\overline{\Lambda}^2}$
- \bullet Correlate initial spin and Λ momentum
- Produce observables in different frames

◦ Propagate input uncertainties: prediction uncertainty (simulation)

The Framework: $\Lambda_b\to\Lambda\nu\bar{\nu}$

◦ Compute double differential decay rate of the Standard Model process

- \bullet Polarized initial state (sample fraction) $\qquad \qquad \mathcal{P}_{\Lambda} = \frac{\Lambda_b}{\Lambda_b}$
- \bullet Correlate initial spin and Λ momentum
- Produce observables in different frames

- Propagate input uncertainties: prediction uncertainty (simulation)
- Compute an NP double differential decay rate:

$$
\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{ts}^* V_{tb} 2 \Big(C_L (\bar{s} \gamma^\mu P_L b) (\bar{\nu} \gamma_\mu P_L \nu) + C_R (\bar{s} \gamma^\mu P_R b) (\bar{\nu} \gamma_\mu P_L \nu) \Big) + \text{h.c.}
$$

The Framework: $\Lambda_b\to\Lambda\nu\bar{\nu}$

◦ Compute double differential decay rate of the Standard Model process

◦ Polarized initial state (sample fraction)

$$
\circ~
$$
 Correlate initial spin and $\Lambda~$ momentum

$$
\text{\textdegree{} \space produce\,observals} \text{ is in different frames} \newline \frac{d \text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{d q^2 d \cos \theta_\Lambda} = \frac{d \text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{d q^2} \left(\frac{1}{2} + A_{\text{FB}}^\uparrow \cos \theta_\Lambda \right)
$$

◦ Propagate input uncertainties: prediction uncertainty (simulation)

◦ Compute an NP double differential decay rate:

$$
\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{ts}^* V_{tb} 2 \Big(C_L (\bar{s} \gamma^\mu P_L b)(\bar{\nu} \gamma_\mu P_L \nu) + C_R (\bar{s} \gamma^\mu P_R b)(\bar{\nu} \gamma_\mu P_L \nu) \Big) + \text{h.c}
$$

 \circ Evaluate the bound on $C_{R,L}$

$$
\mathbf{P}_{\Lambda_b} = \frac{N_{\Lambda_b}^{\dagger} - N_{\Lambda_b}^{\dagger}}{N_{\Lambda_b}^{\dagger} + N_{\Lambda_b}^{\dagger}}
$$

Lab Frame Rest Frame Rest Frame

 $\,\circ\,$ Observed: Channel Decay Rate, $A_{\rm FB}$

Lab Frame Rest Frame Rest Frame

- $\bullet\,$ Observed: Channel Decay Rate, $A_{\rm FB}$
- \circ Assumption: \hat{p}_{Λ_b} axis reconstruction
- Momentum gives us the spin quantization axis for A_{FB}

Lab Frame Rest Frame Rest Frame

- \bullet Observed: Channel Decay Rate, $A_{\rm FI}$
- \bullet Assumption: p_{Λ_k} axis reconstruction
- Momentum gives us the spin
- Reconstruction uncertainty and propagation (hadronics enter here)
- Observable distributions are calculable without hadronic simulation

Lab Frame

 \circ Observed: \hat{E}_{Λ} distribution

Λ_b **Rest Frame**

- \bullet Observed: Channel Decay Rate, A_{FB}
- \circ Assumption: \hat{p}_{Λ_b} axis reconstruction
- Momentum gives us the spin quantization axis for A_{FB}
- Reconstruction uncertainty and propagation (hadronics enter here)
- Observable distributions are calculable without hadronic simulation

Lab Frame

- Observed: E_{Λ} distribution
- \circ Assumption: Initial Λ_b energy reconstruction
- \circ Differential width dependence on E_{Λ}
	- Non-trivial kinematic limits

Λ_b **Rest Frame**

- \circ Observed: Channel Decay Rate, A_{FB}
- \circ Assumption: \hat{p}_{Λ_b} axis reconstruction
- Momentum gives us the spin quantization axis for A_{FB}
- Reconstruction uncertainty and propagation (hadronics enter here)
- Observable distributions are calculable without hadronic simulation

Lab Frame

- \circ Observed: E_A distribution
- \circ Assumption: Initial Λ_b energy reconstruction
- \circ Differential width dependence on E_{Λ}
	- Non-trivial kinematic limits
- Obtain observable distributions dependent on initial energy distribution

Λ_b **Rest Frame**

- $\,\circ\,$ Observed: Channel Decay Rate, A_{FB}
- \circ Assumption: \hat{p}_{Λ_b} axis reconstruction
- Momentum gives us the spin quantization axis for A_{FB}
- Reconstruction uncertainty and propagation (hadronics enter here)
- Observable distributions are calculable without hadronic simulation

$$
\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_b \rangle = \bar{u}_{\Lambda} \left[f_{t}^{V}(q^{2})(m_{\Lambda_b} - m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{V}(q^{2}) \left(\gamma^{\mu} - \frac{2(m_{\Lambda}P^{\mu} + m_{\Lambda_b}p^{\mu})}{(m_{\Lambda_b} + m_{\Lambda})^{2} - q^{2}} \right) \right. \\
\left. + f_{0}^{V}(q^{2}) \frac{m_{\Lambda_b} + m_{\Lambda}}{(m_{\Lambda_b} + m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_b}
$$
\n
$$
\langle \Lambda | \bar{s} \gamma^{\mu} \gamma_{5} b | \Lambda_b \rangle = -\bar{u}_{\Lambda} \gamma_{5} \left[f_{t}^{A}(q^{2})(m_{\Lambda_b} + m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{A}(q^{2}) \left(\gamma^{\mu} + \frac{2(m_{\Lambda}P^{\mu} - m_{\Lambda_b}p^{\mu})}{(m_{\Lambda_b} - m_{\Lambda})^{2} - q^{2}} \right) \right. \\
\left. + f_{0}^{A}(q^{2}) \frac{m_{\Lambda_b} - m_{\Lambda}}{(m_{\Lambda_b} - m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_b}
$$

 \circ Hadronic \mathcal{M} : non-perturbative

$$
\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_b \rangle = \bar{u}_{\Lambda} \Bigg[f_t^V(q^2) (m_{\Lambda_b} - m_{\Lambda}) \frac{q^{\mu}}{q^2} + f_t^V(q^2) \left(\gamma^{\mu} - \frac{2(m_{\Lambda} P^{\mu} + m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} + m_{\Lambda})^2 - q^2} \right) + f_0^V(q^2) \frac{m_{\Lambda_b} + m_{\Lambda}}{(m_{\Lambda_b} + m_{\Lambda})^2 - q^2} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^2 - m_{\Lambda}^2) \frac{q^{\mu}}{q^2} \right) \Bigg] u_{\Lambda_b} \n\langle \Lambda | \bar{s} \gamma^{\mu} \gamma_5 b | \Lambda_b \rangle = -\bar{u}_{\Lambda} \gamma_5 \Bigg[f_t^A(q^2) (m_{\Lambda_b} + m_{\Lambda}) \frac{q^{\mu}}{q^2} + f_{\perp}^A(q^2) \left(\gamma^{\mu} + \frac{2(m_{\Lambda} P^{\mu} - m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} - m_{\Lambda})^2 - q^2} \right) + f_0^A(q^2) \frac{m_{\Lambda_b} - m_{\Lambda}}{(m_{\Lambda_b} - m_{\Lambda})^2 - q^2} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^2 - m_{\Lambda}^2) \frac{q^{\mu}}{q^2} \right) \Bigg] u_{\Lambda_b}
$$

- \bullet Hadronic M: non-perturbative
- \circ Form factors¹ approximate $\mathcal M$

1Detmold, Meinel: 1602.01399

$$
\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_b \rangle = \bar{u}_{\Lambda} \left[f_{t}^{V}(q^{2})(m_{\Lambda_b} - m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{V}(q^{2}) \left(\gamma^{\mu} - \frac{2(m_{\Lambda} P^{\mu} + m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} + m_{\Lambda})^{2} - q^{2}} \right) \right. \\
\left. + f_{0}^{V}(q^{2}) \frac{m_{\Lambda_b} + m_{\Lambda}}{(m_{\Lambda_b} + m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_b} \\
\langle \Lambda | \bar{s} \gamma^{\mu} \gamma_{5} b | \Lambda_b \rangle = -\bar{u}_{\Lambda} \gamma_{5} \left[f_{t}^{A}(q^{2})(m_{\Lambda_b} + m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{A}(q^{2}) \left(\gamma^{\mu} + \frac{2(m_{\Lambda} P^{\mu} - m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} - m_{\Lambda})^{2} - q^{2}} \right) \right. \\
\left. + f_{0}^{A}(q^{2}) \frac{m_{\Lambda_b} - m_{\Lambda}}{(m_{\Lambda_b} - m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_b}
$$

- \bullet Hadronic M: non-perturbative
- \bullet Form factors¹ approximate $\mathcal M$
- Depends on di-neutrino mass $\boxed{\,\,\circ\,\,q^2={(p_{\Lambda_b}-p_{\Lambda})}^2}$

1Detmold, Meinel: 1602.01399

$$
\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_b \rangle = \bar{u}_{\Lambda} \left[f_{t}^{V}(q^{2}) (m_{\Lambda_b} - m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{V}(q^{2}) \left(\gamma^{\mu} - \frac{2(m_{\Lambda} P^{\mu} + m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} + m_{\Lambda})^{2} - q^{2}} \right) \right. \\
\left. + f_{0}^{V}(q^{2}) \frac{m_{\Lambda_b} + m_{\Lambda}}{(m_{\Lambda_b} + m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_b} \\
\langle \Lambda | \bar{s} \gamma^{\mu} \gamma_5 b | \Lambda_b \rangle = -\bar{u}_{\Lambda} \gamma_5 \left[f_{t}^{A}(q^{2}) (m_{\Lambda_b} + m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{A}(q^{2}) \left(\gamma^{\mu} + \frac{2(m_{\Lambda} P^{\mu} - m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} - m_{\Lambda})^{2} - q^{2}} \right) \right. \\
\left. + f_{0}^{A}(q^{2}) \frac{m_{\Lambda_b} - m_{\Lambda}}{(m_{\Lambda_b} - m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_b}
$$

- \circ Hadronic M: non-perturbative
- \circ Form factors¹ approximate $\mathcal M$
- Depends on di-neutrino mass $q^2 = (p_{\Lambda_b} - p_{\Lambda})^2$
- Only vector and axial elements used
	- Couples to neutrinos scalar and tensor elements ignored

- Form Factors
	- Second order expansion

◦ Form Factors

- Second order expansion
- CKM Uncertainties
	- \circ Dominated by V_{ts}
	- Unitarity used to obtain tree-level determinations

◦ Form Factors

- Second order expansion
- CKM Uncertainties
	- Dominated by
	- Unitarity used to obtain tree-level
- $\,\circ\,$ Top mass, higher order QCD and EW¹ enter through the SM value of C_L^{ν}

- Form Factors
	- Second order expansion
- CKM Uncertainties
	- \circ Dominated by V_{ts}
	- Unitarity used to obtain tree-level determinations
- Top mass, higher order QCD and EW enter through the SM value of C_L^{ν}
- Uncertainty in the lifetime propagates into the branching fraction

New Physics Sensitivity

- Interpretation:
	- Green: Branching Ratio Constraints
		- $\cdot 1\sigma,\,2\sigma$ contours displayed
	- Dashed: $A_{\text{FB}} = 0\%, \pm 1\%$

$$
\quad \circ \ \ \mathcal{P}_{\Lambda_b} = -0.4
$$

New Physics Sensitivity

◦ Interpretation:

- Green: Branching Ratio Constraint
	- 1σ and 2σ contours displayed
- Dashed: $A_{\rm FB}=0\%$, $\pm 1\%$
- \circ
- Combines experimental uncertainty projections with theory error

New Physics Sensitivity

- Interpretation:
	- Green: Branching Ratio Constraints $\cdot 1\sigma$, 2σ contours displayed
	- Dashed: $A_{\text{FB}} = 0\%, \pm 1\%$
	- $\circ \mathcal{P}_{\Lambda_b} = -0.4$
- Combines experimental uncertainty projections with theory error
- \circ A_{FB} and branching ratio offer great complementarity

 \circ Future e^+e^- colliders provide excellent prospects for NP detection via $\Lambda_b\to\Lambda\nu\bar\nu$

- \bullet Future e^+e^- colliders provide excellent
- Polarization measurements offer insight into chiral structure

- \bullet Future e^+e^- colliders provide excellent
- Polarization measurements offer
- This information can be probed in the lab frame as well

- \bullet Future e^+e^- colliders provide excellent
- Polarization measurements offer
- This information can be probed in the
- Currently unprobed: a trove of information!

- \circ Future e^+e^- colliders provide excellent prospects for NP detection via $\Lambda_b \to \Lambda \nu \bar{\nu}$
- Polarization measurements offer insight into chiral structure
- This information can be probed in the lab frame as well
- Currently unprobed: a trove of information!

◦ Initial energy distribution: Pythia

- \circ Future e^+e^- colliders provide excellent prospects for NP detection via $\Lambda_b \to \Lambda \nu \bar{\nu}$
- Polarization measurements offer insight into chiral structure
- This information can be probed in the lab frame as well
- Currently unprobed: a trove of information!

- Initial energy distribution: Pythia
- Background analysis
	- \circ Σ_b , etc.

- \circ Future e^+e^- colliders provide excellent prospects for NP detection via $\Lambda_b \to \Lambda \nu \bar{\nu}$
- Polarization measurements offer insight into chiral structure
- This information can be probed in the lab frame as well
- Currently unprobed: a trove of information!

- Initial energy distribution: Pythia
- Background analysis
	- \circ \sum_{b} etc.
- \circ *Dark* final states masquerade as E
	- Effect on observables DM structure
	- Interesting mass/coupling enhancements (due to FFs as well)

- \circ Future e^+e^- colliders provide excellent prospects for NP detection via $\Lambda_b \to \Lambda \nu \bar{\nu}$
- Polarization measurements offer insight into chiral structure
- This information can be probed in the lab frame as well
- Currently unprobed: a trove of information!

- Initial energy distribution: Pythia
- Background analysis
	- \circ Σ_b , etc.
- *Dark* final states masquerade as
	- Effect on observables DM structure
	- Interesting mass/coupling enhancements (due to FFs as well)
- Meson decays: current/future data $\phi: B \to K^{(*)} \nu \nu, B_s \to \phi \nu \nu$

