Search for long-lived charged particles using the CMS detector in Run 2

Petar Maksimovic, Johns Hopkins

 \int

DPF-PHENO 2024

 \rightarrow Fetar Maksimovic, Johnson Hopkins $\mathcal{S}(\mathcal{A})$, $\mathcal{S}(\mathcal{A})$, $\mathcal{S}(\mathcal{A})$ and $\mathcal{S}(\mathcal{A})$

DPF-PHENO 2024

Motivation

- Many models predict Heavy Stable Charged Particles (HSCP):
	- split-SUSY (R-hadrons with gluinos, stops)
	- GMSB/GGM SUSY (staus)
	- extra dimensions and fourth-generation BSM models (τ' with Q=1e and 2e)
	- ATLAS excess motivated Z' to $\tau'(2e)$ model

 \Rightarrow Signature-driven, model-independent search with many possible interpretations

 $\pmb{R^0}$

ATLAS excess

- 3σ excess (exp 0.7, obs 7), reconstructed as muons
	- However, $\beta \sim 1$, compatible with SM ("not slow") [2205.06013](https://arxiv.org/abs/2205.06013)

Selection of HSCP candidates

- **SM sources of highly ionizing tracks:**
	- Fake tracks
	- **Bad ionization measurement**
	- Tail of the Landau distribution
	- Overlapping tracks in the tracker (pileup, boosted meson decays, core of jets)
- **Preselection:**
	- $p_T > 55 \text{ GeV}$
	- Track isolation
	- `Mini' isolation (boost invariant, includes calorimeter info)

Petar Maksimovic, Johns Hopkins *Search for long-lived charged particles @ CMS*

- general track/hit clean-up
- no 2016 data

Ex. of highly ionizing event: boosted $J\psi \rightarrow \mu\mu$ decay muons's hits overlap

J/Psi

DPF-PHENO 2024

Ionizaton observables

• Pixels:
$$
F_i^{\text{Pixels}} = 1 - \prod_{j=1}^{n} P_j' \sum_{m=0}^{n-1} \frac{[-\ln(\prod_{j=1}^{n} P_j')]^{m}}{m!}
$$

\n• Strips: $G_i^{\text{Strips}} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{j=1}^{N} \left[P_j \left(P_j - \frac{2j-1}{2N} \right)^2 \right] \right)$

Using info from different detector $sub\text{-}systems \Leftrightarrow Uncorrelated by construction!$

Ionizaton observables

Ionizaton observables

\n- Pixels:
$$
F_i^{\text{Pixels}} = 1 - \prod_{j=1}^{n} P_j' \sum_{m=0}^{n-1} \frac{[-\ln(\prod_{j=1}^{n} P_j')]^m}{m!}
$$
 EXO-18-002
\n- Strips: $G_i^{\text{Strips}} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{j=1}^{N} \left[P_j \left(P_j - \frac{2j-1}{2N} \right)^2 \right] \right)$ **Signal region**
\n

Bkg estimation #1: 'Ionization method'

 F and G and uncorrelated, and F is flat for bkg...

Results: 'Ionization method' EXO-18-002

• $F_i^{Pixels} > 0.9$; use the full shape of G_i^{Strips} +

Results: 'Ionization method'

• $F_i^{Pixels} > 0.9$; use the full shape of G_i^{Strips} +

Petar Maksimovic, Johns Hopkins *Search for long-lived charged particles @ CMS*

DPF-PHENO 2024

- If excess, need to know mass; F vs G not very sensitive to it
	- Improved method used in previous HSCP searches by CMS.

- If excess, need to know mass; F vs G not very sensitive to it
	- Improved method used in previous HSCP searches by CMS.

- K,C from a low- p_T sample of π, K, p
- Solve for m, plot

- Data-driven: assume independence of I_h and p , and of p_T and G_i^{Strips} . Note lower $p_T > 70 \text{ GeV}$
	- ABCD method to determine every bin in mass spectrum

• Fit I_h shape in B and p in C, in bins of η , use to predict m in SR.

Data-driven: assume independence of I_h and p , and of p_T and G_t^{Strips} . Note lower $p_T > 70 \text{ GeV}$

Interpretations (1)

- Use the more suitable measurement for each model
- **Gluino**
	- $mass > 2.03 TeV$
	- (ionization method)
- **Stop**
	- $mass > 1.52 TeV$
	- (mass method)

Petar Maksimovic, Johns Hopkins *Search for long-lived charged particles @ CMS*

DPF-PHENO 2024

Interpretations (2)

- mass > 1.47 TeV
- (mass method)
- Model (2205.04473) created as an explanation of ATLAS excess: provides a highly ionizing track with $\beta \sim 1$
- (ionization method)

Petar Maksimovic, Johns Hopkins *Search for long-lived charged particles @ CMS*

Interpretations (2)

Interpretations (3)

- X-sec limits: ionization method better limits at low signal masses
- While the mass methods is more efficient at large masses

Petar Maksimovic, Johns Hopkins *Search for long-lived charged particles @ CMS*

Conclusions

- A signature based, model independent search for HSCPs
- Two data-driven background predictions:
	- a novel approach relying on the independence of the ionization in the tracking detectors
	- an improved version of the historical mass method
- No significant excess over the SM : (
- Interpreted in 10 different models (one of them a direct response to ATLAS excess)
- HSCP mass exclusions significantly increased compared with previous CMS previous search