Search for long-lived charged particles using the CMS detector in Run 2

Petar Maksimovic, Johns Hopkins

DPF-PHENO 2024

Motivation

- Many models predict Heavy Stable Charged Particles (HSCP):
 - split-SUSY (R-hadrons with gluinos, stops)
 - GMSB/GGM SUSY (staus)
 - extra dimensions and fourth-generation BSM models (au' with Q=1e and 2e)
 - ATLAS excess motivated Z' to au'(2e) model

 \Rightarrow Signature-driven, model-independent search with many possible interpretations

 R^0

ATLAS excess

- 3σ excess (exp 0.7, obs 7), reconstructed as muons
 - However, $\beta \sim 1$, compatible with SM ("not slow") 2205.06013

Selection of HSCP candidates

- SM sources of highly ionizing tracks:
 - Fake tracks
 - Bad ionization measurement
 - Tail of the Landau distribution
 - Overlapping tracks in the tracker (pileup, boosted meson decays, core of jets)
- Preselection:
 - $p_T > 55 \text{ GeV}$
 - Track isolation
 - `Mini' isolation (boost invariant, includes calorimeter info)
 - general track/hit clean-up
 - no 2016 data

Ex. of highly ionizing event: boosted $J\psi
ightarrow \mu\mu$ decay muons's hits overlap

J/Psi

Ionizaton observables

• Pixels:
$$F_i^{\text{Pixels}} = 1 - \prod_{j=1}^n P_j' \sum_{m=0}^{n-1} \frac{\left[-\ln(\prod_{j=1}^n P_j')\right]^m}{m!}$$

• Strips: $G_i^{\text{Strips}} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{j=1}^N \left[P_j \left(P_j - \frac{2j-1}{2N}\right)^2\right]\right)$

Using info from different detector sub-systems \Leftrightarrow Uncorrelated by construction!

Ionizaton observables

Ionizaton observables

• Pixels:
$$F_{i}^{\text{Pixels}} = 1 - \prod_{j=1}^{n} P_{j}' \sum_{m=0}^{n-1} \frac{[-\ln(\prod_{j=1}^{n} P_{j}')]^{m}}{m!}$$
 EXO-18-002
• Strips: $G_{i}^{\text{Strips}} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{j=1}^{N} \left[P_{j} \left(P_{j} - \frac{2j-1}{2N} \right)^{2} \right] \right)$ Signal region

Bkg estimation #1: 'Ionization method'

• F and G and uncorrelated, and F is flat for bkg...

Results: 'Ionization method'

• $F_i^{\text{Pixels}} > 0.9$; use the full shape of $G_i^{\text{Strips}} + p_T > 200 \text{ GeV}$

Results: 'Ionization method'

• $F_{i}^{Pixels} > 0.9$; use the full shape of $G_{i}^{Strips} + p_{T} > 200 \text{ GeV}$

Petar Maksimovic, Johns Hopkins

Search for long-lived charged particles @ CMS

DPF-PHENO 2024

- If excess, need to know mass; F vs G not very sensitive to it
 - Improved method used in previous HSCP searches by CMS.

- If excess, need to know mass; F vs G not very sensitive to it
 - Improved method used in previous HSCP searches by CMS.

- K, C from a low- p_T sample of π, K, p
- Solve for m, plot

- Data-driven: assume independence of I_h and p, and of p_T and $G_i^{\rm Strips}$. Note lower $p_T > 70~GeV$
 - ABCD method to determine every bin in mass spectrum

• Fit I_h shape in B and p in C, in bins of η , use to predict m in SR.

• Data-driven: assume independence of I_h and p, and of p_T and G_i^{Strips} . Note lower $p_T > 70 \; GeV$

Interpretations (1)

- Use the more suitable measurement for each model
- Gluino
 - mass > 2.03 TeV
 - (ionization method)

- Stop
 - mass > 1.52 TeV
 - (mass method)

Petar Maksimovic, Johns Hopkins

Search for long-lived charged particles @ CMS

DPF-PHENO 2024

Interpretations (2)

- mass > 1.47 TeV
- (mass method)

- Model (2205.04473) created as an explanation of ATLAS excess: provides a highly ionizing track with $\beta \sim 1$
- (ionization method)

Petar Maksimovic, Johns Hopkins

Search for long-lived charged particles @ CMS

Interpretations (2)

Interpretations (3)

- X-sec limits: ionization method better limits at low signal masses
- While the mass methods is more efficient at large masses

Model	Ionization method		Mass method	
	Exp. (TeV)	Obs. (TeV)	Exp. (TeV)	Obs. (TeV)
ĝ	2.08 ± 0.09	2.03	2.13 ± 0.11	2.13
\widetilde{t}	1.45 ± 0.08	1.40	1.51 ± 0.10	1.52
GMSB $\widetilde{ au}$	0.88 ± 0.07	0.84	0.87 ± 0.09	0.85
pair-prod. $\widetilde{ au}_R$	0.55 ± 0.07	0.52	0.52 ± 0.07	0.51
pair-prod. $\widetilde{ au}_L$	0.68 ± 0.08	0.64	0.68 ± 0.10	0.61
pair-prod. $\tilde{\tau}_{L/R}$	0.73 ± 0.08	0.69	0.75 ± 0.10	0.64
τ' ($Q = 1e$) from DY prod.	1.06 ± 0.10	1.02	1.18 ± 0.12	1.20
τ' ($Q = 2e$) from DY prod.	1.44 ± 0.17	1.37	1.46 ± 0.13	1.47
${ m Z'}_\psi ightarrow au' au'$	4.01 ± 0.27	3.88	4.20 ± 0.29	4.22
${ m Z'}_{SSM}^{\prime} ightarrow au^{\prime} au^{\prime}$	4.56 ± 0.28	4.41	4.75 ± 0.28	4.76

Search for long-lived charged particles @ CMS

Conclusions

- A signature based, model independent search for HSCPs
- Two data-driven background predictions:
 - a novel approach relying on the independence of the ionization in the tracking detectors
 - an improved version of the historical mass method
- No significant excess over the SM :(
- Interpreted in 10 different models (one of them a direct response to ATLAS excess)
- HSCP mass exclusions significantly increased compared with previous CMS previous search