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Quantum Computing - Why are we interested?

Quantum Computing for High-Energy Physics
State of the Art and Challenges
Summary of the QC4HEP Working Group

Alberto Di Meglio,'** Karl Jansen,?* T Ivano Tavernelli,* * Constantia Alexandrou,”?® Srinivasan Arunachalam,®
Christian W. Bauer,” Kerstin Borras,®? Stefano Carrazza,'®! Arianna Cprippa,® ' Vincent Croft,*?
Roland de Putter,® Andrea Delgado." Vedran Dunjko,'? Daniel J. Egger,* Elias Fernandez-Combarro,™*
Elina Fuchs,™ 1516 Lena Funcke,'” Daniel Gonzilez-Cuadra,'® ' Michele Grossi.,1 Jad C. Halimeh,20-2!

Z0é Holmes,?? Stefan Kiihn,? Denis Lacroix,?> Randy Lewis,?* Donatella Lucchesi,?? 20:1
Miriam Lucio Martinez,?™ 2% Federico Meloni,® Antonio Mezzacapo,® Simone Montangero,?> 2% Lento Nagano,?”
Voica Radescu,?® Enrique Rico Ortega,?!:32%33:34 Alessandro Roggero,* 3% Julian Schuhmacher,* Joao Seixas,?" 339
Pietro Silvi,?” 2% Panagiotis Spentzouris,* Francesco Tacchino,* Kristan Temme,® Koji Terashi,?”
Jordi Tura,'>*! Cenk Tiiysiiz,> ! Sofia Vallecorsa,! Uwe-Jens Wiese,*? Shinjae Yo0,** and Jinglei Zhang** 4>

Quantum computers offer an intriguing path for a paradigmatic change of computing in
the natural sciences and beyond, with the potential for achieving a so-called quantum
advantage, namely a significant (in some cases exponential) speed-up of numerical
simulations. The rapid development of hardware devices with various realizations of
qubits enables the execution of small scale but representative applications on quantum
computers. In particular, the high-energy physics community plays a pivotal role in
accessing the power of quantum computing, since the field is a driving source for
challenging computational problems. This concerns, on the theoretical side, the
exploration of models which are very hard or even impossible to address with classical
techniques and, on the experimental side, the enormous data challenge of newly emerging
experiments, such as the upgrade of the Large Hadron Collider. In this roadmap paper,
led by CERN, DESY and IBM, we provide the status of high-energy physics quantum
computations and give examples for theoretical and experimental target benchmark
applications, which can be addressed in the near future. Having the IBM 100 Q 100
challenge in mind, where possible, we also provide resource estimates for the examples
given using error mitigated quantum computing.

Quantum Computing for High-Energy Physics (arXiv:2307.03236v1 [quant-ph] 6 Jul 2023)

- Exploring QML for HEP


https://arxiv.org/pdf/2307.03236

Introduction to quantum computing

Machine learning (ML) and quantum machine learning (QML)

Analysis 1 : VQC for LHC data - example of QC/QML to analyze

classical data

Analysis 2: Quantum Generative Adversarial Network - example

of QC/QML to analyze “quantum” data

Future outlook

Type of Data

quantum

classical

Type of Algorithm

classical quantum
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https://en.wikipedia.org/wiki/Quantum_machine_learning
https://en.wikipedia.org/wiki/Quantum_machine_learning

Qubits, Gates, and Circuits

Physical Qubits Qubits Representation in Quantum Computing
Bloch Sphere Operations
cos(6/2 ® Initiali
k= <ei¢ si(rlo(/O/)2)> ° (gl)ltahlrzoeugh operations

called “quantum gates”
e Measure

Hadamard, a single qubit

gate
As an example, let's look at an ion trap
quantum computer. |0> H ’ 7!
Two of the energy levels of the ion was
used as the |0)state and |1)state. |0) Pb——F
Laser are used to control the qubits. CNOT gate, a type of two-qubit

gate
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Noisy Intermediate-scale quantum era
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The Quantum Technology Ecosystem — Explained

. » .
M mputing. where are we and wher W ZLAAPPS Bullelin Quantum Computing Modalities — A Qubit Primer Revisited

Accelerating Quantum Computing Readiness: Risk Management and Strategies for Sectors
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https://mitsloan.mit.edu/ideas-made-to-matter/quantum-computing-what-leaders-need-to-know-now
https://mitsloan.mit.edu/ideas-made-to-matter/quantum-computing-what-leaders-need-to-know-now
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https://mitsloan.mit.edu/ideas-made-to-matter/quantum-computing-what-leaders-need-to-know-now
https://www.scirp.org/journal/paperinformation?paperid=125557
https://link.springer.com/article/10.1007/s43673-022-00058-z#Fig5
https://steveblank.com/2022/03/22/the-quantum-technology-ecosystem-explained/
https://quantumtech.blog/2022/10/20/quantum-computing-modalities-a-qubit-primer-revisited/

: Machine Learning

Classical Quantum
o Classical neural networks o Variational quantum circuit
o Parameters of neural network are o Gate parameters are varied to
varied to minimize loss function minimize loss function
Input Hidden Output Update Parameters (0)
Layer Layer Layer g e R o TITITr s I ------ f
. _Z i Optimizer 1
::QO; U1(x)
s T v
: - N 01 Equ)
® .0 " @ oy Eualuae
' % » cost function
= \ hs /'/‘;VZ.B.I . Feature map ~ :
‘ W33 0 - Quantum Classical -

2105.10162] Variational Quantum Classifiers Through the Lens of
the Hessian
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https://editor.analyticsvidhya.com/uploads/9709833.png
https://arxiv.org/abs/2105.10162
https://arxiv.org/abs/2105.10162

‘ A Quantum Classifier

How can variational quantum circuit be used for supervised machine learning?

We need to have

e input X
e function f7 with trainable parameters g
e outputy= f3x)

a1 measure

qz

|1)
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http://dx.doi.org/10.1088/2058-9565/ace378
https://themlbook.com/

Analysis 1: VQC with LHC data

Phys. Lett. B 716 (2012) 30
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e MC signal and background events similar to Higgs discovery analysis . : ]
H 0= 80 100 120 140 160 180
e HtoZZto 4 leptons (muons in our case)

m,, (GeV)

Features used

e Total invariant mass of 4 leptons
e [nvariant mass of first Z boson measure
e [nvariant mass of second Z boson
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http://dx.doi.org/10.1016/j.physletb.2012.08.021

Results - Ideal simulation

confusion matrix

Loss During training
e R

Noiseless quantum circuit simulated 8 % .
on a classical computer - | o 15
0.8} 1 2 200
i 1 F
e Training set size: 2400 06f- ] 0
e Testing set size: 600 ol ] ; 95 b
e 1epoch : 1 50
e Batch size 2 om0 000 g -
e SPSA optimization eraten Predicted label
e Loss function: binary cross entropy
Classification Histogram ROC curve
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| o | 8 40;_ 1 Background _ .g 0.8E
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Results - Noisy Simulation

Classical simulation with hardware noise taken into account Other training settings are

the same as the ideal

° Noise models were used to characterize the hardware noise simulation.

e Noise models corresponding to 3 different quantum computers were tested
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Using IBM Quantum cloud-based simulators

Get Started with Hardware Noise Model Simulation
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https://docs.quantum.ibm.com/verify/using-ibm-quantum-simulators
https://ionq.com/docs/get-started-with-hardware-noise-model-simulation

Would it Work on Real Quantum Hardware?

Result on real quantum hardware

Classification Histogram

14 M [ signal

IBM osaka 127 Qubits i 3 Background
Training set size: 80 ﬂ
Testing set size: 80
1 epoch
Batch size 2
SPSA optimization i

[ | gt

10 A

Counts

00 02 04 06 08 1.0
A different model was used with same Output
number of qubits and features
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QML for “Quantum” Data

e QML may be more suited for quantum data.
e “Quantum memory” or “quantum storage” not yet

Type of Algorithm

classical quantum

available
e Maybe classical data generated by a quantum process CC
also has some “quantumness”?
o Generate toy data with “quantumness”

o See whether QML can learn the pattern QC QQ

e Quantum generative adversarial network (QGAN) L wikipedia

classical

Type of Data

quantum

Ultimate goal is to use it for HEP physics processes

[2403.07059] Better than classical? The subtle art of benchmarking quantum machine learning models
(https://arxiv.org/abs/2403.07059)
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https://arxiv.org/abs/2403.07059
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s Quantum Generative Adversarial Network (QGAN)

GAN has two parts

® (Generator generates fake images

® Discriminator tries to distinguish between real and fake

images.

True
Images

Fake

Generator

Quantum GAN

® Different approaches exist. Here, | focus on our
approach.

® Ve use classical discriminator and quantum generator

Measurement outcome => images

® Natively suited by binary images (0 or 1)
® [or continuous data, use 2 or more qubits for 1 pixel.

A
'

feedback

.............

Images

Discriminator

Quantum Circuit

SR
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Analysis 2. QGAN for “Quantum” Toy Data

e Starting with toy data produced by a random quantum circuit

o 4 qubits -> 4 pixel images

o  So that the data will have “quantum correlation” 16 images
e Test QGAN performance on the “quantum” toy data (each 2by:2)

e Compare with Classical GAN L L I

do & ?
a1 .

q2 U1 (6.09) .

qs 53
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Quantum GAN with discrete toy data

e QGAN trained on discrete toy data
o Discriminator is MLP with 2 hidden layers

. ‘q—) i RN AU T AR N TN

e Non-saturating GAN loss £ 1000 - gzﬁerated |
. . . . 2 - ]

e Quantum circuit simulated on a classical computer. < 800 .
600[- -

. 400 E

: 200|- E

] ) o 1 | _

L k I L 1 L ]
. P __m—
(each 2 by 2) . T?

A separate classical neural

Real Generated network was used to
k t IL IL . = t IL . visualize QGAN’s
E Loss curve erformance.
al 0 kall P
i1 1Rk k
(Less separated data =>

e W W better GAN performance)
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A classical GAN

o Discriminator: MLP with 2 hidden layers
o  Generator: MLP with 2 hidden layers

Non-saturating GAN loss

A separate classical neural network was used to

visualize GAN'’s performance.
o Less separated data => better GAN performance

Real Generated
BLkI L 1 kI
T2 EET"
sl 1kl
1 1T EilLk &k

16 images
(each 2 by 2)

Generator and Discriminator Loss During Training

Loss curve

—
)

1000}

800}

| T T T T
Hl true

generated

using a

classical neural ]

network

Validation test |

00 025 050 0.75
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QGAN for “quantum” toy data - continuous

e (Can we do the same with continuous data? 16 images
o 1 qubit can only represent binary data (each 2by2)
o 2 qubits can represent 4 numbers 1 1
o n qubits can represent 2*n numbers, approximating ‘ l-
continuous data
e Here, we use 2 qubits for each pixel l 1
o Random variation is added to make the data more .I I

“continuous”
a g
a =
a = I a
Test the performance of -
QGAN and classical a
GAN as before e I @

Jinghong Yang - Exploring QML for HEP



Quantum GAN with Continuous Toy Data

e QGAN trained on toy data generated by a random circuit.
o Discriminator: MLP with 2 hidden layers = =
o Non-saturating GAN loss

Loss curve

e A separate classical neural network was used to visualize

GAN’s performance.
o Less separated data => better GAN performance ]

Validation test using a
classical neural network

16 images BT o e
ReSaCh 2 bGyei)erated 5 1503 e _
100]
N« T " " - ’
" 2™ """ e 50
s " c, |
' e P %00 025 050 075  1.00

Jinghong Yang - Exploring QML for HEP



e C(Classical GAN trained on toy data generated by a random

circuit.
o  Discriminator: MLP with 2 hidden layers
o  Generator: MLP with 2 hidden layers
o Non-saturating GAN loss

e A separate classical neural network was used to visualize

GAN's performance.
o Less separated data => better GAN performance

Real Generated

16 images
(each 2 by 2)

‘ol | ' B
l.‘l ‘
Fom Ea"

‘o Ty
n mmman

il ol o ™

Generator and Discriminator Loss During Training

Loss curve

5000

Validation test using a
classical neural network

A
[ true
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QGAN for Real Classical Continuous Data

Let’s try QGAN on real data instead of toy data - QGAN for CLIC
ECAL Showers
We used the calorimeter images” and further downscaled it to 4

pixels.

. Ener
The value at each pixel represents the energy. oy
We use 2 qubits for 1 pixel. 0%
0.3 -
* 2305.07284] A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations
10,5281/zen0d0.7025232 0.2 -
CLIC Calorimeter 3D images: Electron showers at Fixed Angle =.
1912.06794] Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics ®© 0- 1 7
0.0 -

Jinghong Yang - Exploring QML for HEP



https://arxiv.org/abs/2305.07284
https://zenodo.org/doi/10.5281/zenodo.7025232
https://zenodo.org/records/3603122
https://arxiv.org/abs/1912.06794

QGAN for CLIC ECAL Showers

QGAN Discriminator:
MLP with 2 hidden layers
Training set size ~ 1000

Non-saturating GAN loss

Real images

04 04 l
03 03 l
02 02 l
01 01 l
00 00 l
04 04 '
03 l
02 '
01 l
00 '

Generated images

L
[ —— true
|- generated

s 88 8% 88 R/ € %

20

Generator and Discriminator Loss During Training

Loss curve
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generated
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Conclusion and Outlook

We've showcased preliminary studies
employing Quantum Machine Learning
(QML) for High-Energy Physics (HEP) data

We will proceed to more sophisticated
cases and search for suitable applications
of QML in HEP

We know Quantum computing has
potential but better understanding is
needed to unleash its full power.
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FIG. 3. Estimates of the resources required to implement three applications, assuming the qubit parameter
examples specified in Table II. We explore a trade-off in the quantum dynamics application by consider-
ing two implementations: one which uses sufficient T factories to supply the needs of the shortest-depth
algorithm and another which slows the algorithm down, allowing for a reduced number of T factories.

Assessing requirements to scale to practical quantum
advantage arXiv:2211.07629v1 [quant-ph] 14 Nov 2022
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https://arxiv.org/pdf/2211.07629
https://arxiv.org/pdf/2211.07629

Thank you!

We are just starting
Any comments, suggestions are most welcome!




Backup Slides
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Supervised Machine Learning

Basically, you have a dataset sample with input { x;} and output {¥;}.
You want to train f; to map X; to ¥:.
Linear regression: y = k x + b; minimizing chi-square
Supervised machine learning is similar, but fancier
o Alot more parameters to ensure flexibility

o Rather than chi-square, may use other loss functions
o Certain techniques (e.g. stochastic gradient) are used to find optimal parameters

In classification tasks, y=1 for signal and y=0 for background.

Jinghong Yang - Exploring QML for HEP



Examples of quantum gates

piin H = £ G 11> , where |0) and |1) are the basis vectors.
2 —
Therefore, the result of this circuit is: |O> H—
1
H|0) =—(|0) + |1
0) = == (10) + 1)

Jinghong Yang - Exploring QML for HEP



Examples of quantum gates

Controlled-NOT (CNOT)
When the control qubit is in |g), do nothing.
When the control qubit is in |1), flip the target qubit.

1 1
CNOT— (|0) + |1)) ® |0) = —= (|0) ® |0) + |1) ® |1))
V2 W 0) —{H}—
Creates an entangled state | O) A
U

Jinghong Yang - Exploring QML for HEP



Optimization of trainable parameters

e In classical machine learning, one can use gradient descent to optimize

parameters.

o You have loss function to measure how good or bad f~ is
o Calculate the gradient of loss function with respect to the parameters 9
o Change ,9 according to the gradient

e For a quantum circuit, gradient calculation is not easy.

o gradient calculation scales with O(n). n is the number of parameters.
o One alternative is simultaneous perturbation stochastic approximation (SPSA)

Jinghong Yang - Exploring QML for HEP



Simultaneous Perturbation Stochastic Approximation

e An approximation of the gradient.

e In the phase space of parameters 5 pick a random direction
A according to some rules.

e For each iteration step,

At
L Ll +cA) — L(f - cA) | A5
= 2c :
A=
69— 86— ag

e Scale with O(1)
e [n short, use directional derivative rather than the gradient.

Jinghong Yang - Exploring QML for HEP
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https://pennylane.ai/qml/demos/tutorial_spsa/

Different approaches of QGAN

There are different approaches to generate continuous data

e Expectation value approach
o Evaluate the circuit for many times and estimate the expectation value of an operator.
o E.g.1901.00848, 2305.07284
e Multiple qubits approach
o Use more than 1 qubit for each pixel
o E.g.2109.06315
o  Similar to Quantum Circuit Born Machine
e Others
o E.g.2103.15470

Jinghong Yang - Exploring QML for HEP
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Using multiple qubits for 1 pixel

e 1 qubit — suitable for binary data

e 2 qubits

00, 01, 10, 11

They can correspond to 1/8, 3/8, 5/8, and 7/8.

Then, we apply a uniform random distribution [-1/8, 1/8]

Thus, we can approximately represent floats between 0 and 1.
e 3 qubits and beyond

o  Similar strategy

O O O O

Similar to:
2109.06315

Jinghong Yang - Exploring QML for HEP


https://arxiv.org/abs/2109.06315

“Discrimination plots”

e After a GAN has been trained, we wish to visualize its performance.
e To achieve this purpose, we train another classical neural network to try to

distinguish between the real data and the generated data.
o If the classical neural network can easily distinguish between them, it means that the
generator is not good enough.
o If the classical neural network fails to effectively distinguish between them, it means the
generator is successful.

Jinghong Yang - Exploring QML for HEP SHARDS



Qubits, Gates, and Circuits

0) — H l “ K
a qubit 0) B

— H — asingle qubit gate

e In classical computers,
there are AND, OR, XOR,

etc.
CNOT gate, a type of e In quantum computers,

two-qubit gate there are quantum gates.

Jinghong Yang - Exploring QML for HEP



Quantum Machine Learning

ing-K® -BII iovagnoli/ecdaf!05d218fe8fb04aft83cabibde2d48d4

Quantum Machine Learning (QML) Input ~ Weights «——

e \ariational quantum circuit
o Contain parameterized gates

o Gate parameters are trainable quﬁE;
e Training process qz

o Vary the parameters based on certain algorithms
o  Minimize loss function

0> —— =)
_ —? Figure 1: Overview of the Variational Quantum Circuit
‘ o> e Training Process with Weight Constraints

Jinghong Yang - Exploring QML for HEP


https://www.semanticscholar.org/paper/Improving-Convergence-for-Quantum-Variational-using-K%C3%B6lle-Giovagnoli/ecdaf105d218fe8fb04aff83cabfbde2d48d4ecc
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https://senpinaki222.medium.com/optimizing-a-variational-quantum-circuit-studying-the-character-of-the-optimized-cost-as-a-a8bac2e9ba46

Quantum Encoding - inputting data into circuit

e Quantum circuit: map x to f(x)

e How does the quantum circuit take x as an input?

Encode the data using parameterized gates

E.g., for input feature x, we apply RX(k*x) gate on a qubit.
This put the qubit jin ) — ( 908_(k1§’é2) ) state.

n features, n qubits i)

-t B oy

a1 measure

o O O O

g2
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Physics of Quantum Computers

As an example, let's look at an ion trap quantum computer.

2
s
= 3[3/2]32
b4 }2.216Hz -
2P]/2 = ¥ F=1 7= 37.7ns F=0
2.105 GHz { T, F=0
I/27 = 19.7 MHz e ly TTU
7 =8.12ns '4411;7;'....‘,0’ 2D3/2
E . & 2l e }o.86 Gz ::if
m ) A .OJP T=52Tms
D -
a |7 XYY
o o
m ..’
10) = {2515: F = 0.mpp = 0}
Q. - —_— 2 . — _—
12— —-°‘“>}_ =1 ) ={8)y F =1mp=0}
12.6428 GHz
— | O > F=0

Figure 2.1: Energy levels of interest for the ™'Yb* qubit. The qubit is defined as
[0) = |F =0;mp =0) and |1) = |F = 1;mp = 0).

Building and Programming a Universal lon Trap

Quantum Computer



https://iontrap.umd.edu/wp-content/uploads/2013/10/FiggattThesis.pdf
https://iontrap.umd.edu/wp-content/uploads/2013/10/FiggattThesis.pdf

[0}
& 8 & & £ & & & 38

o
8 ¢ 8 8 8 8 8 2 8

QGAN for CLIC ECAL Showers
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8 5 8 o s

o
8 & ° = 8

QGAN for “quantum” toy data
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Sanity check for QGAN

e For the continuous toy data, it is pure noise? Is there
anything to learn for QGAN?

e While the output may look random, different random
circuits will produce results that are distinguishable from

each other.
o300 T Tt
0 - i
& i
-}
[ - i
2000 -
1000:— —
0— |‘\”'l|3:r'»—| i | sin e eg ol e jropeenneafiea ]
000 025 050 075 1.00

score
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QGAN with discrete toy data - another dataset

We also tried discrete “quantum” data with a more complex dataset.

16 real images
(each 2 by 2)

16 fake images
(each 2 by 2)
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Generator and Discriminator Loss During Training
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