Born-Oppenheimer Potentials for Quarkonium Hybrid Mesons

Fareed Alasiri ¹ Eric Braaten ¹ Abhishek Mohapatra ²

¹The Ohio State University

²Technical University of Munich

DPF-PHENO 2024

Exotic hadrons

Phys. Rev. Lett. 91, 262001 (2003)

- Non-traditional states like mesons and baryons.
- XYZ hadrons.
- X(3872): The first exotic state discovered in 2003 by Belle.
- Dozens of exotic hadrons have been discovered since then.
- The challenge is building a theoretical framework to understand and predict their existence.

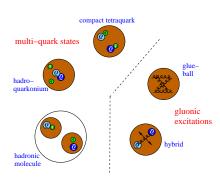
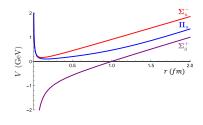


Figure: [arXiv:1907.07583]

The Born-Oppenheimer Potentials

```
Juge, Kuti, Morningstar (JKM) (hep-ph/9902336)
Brambilla, Pineda, Soto, Vairo (hep-ph/9907240).
```

- A fundamental understanding of exotic hadrons based on QCD presents a challenge.
- The Born-Oppenheimer approximation for QCD was pioneered by Juge, Kuti and Morningstar.
- The B-O approximation was developed by Brambilla et al. into an effective field theory named pNRQCD which was later called BOEFT.
- BOEFT can address all these states with inputs from Lattice QCD on the B-O potentials.

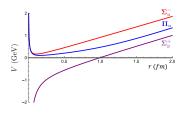

BO quantum numbers

- QCD symmetries: SO(3), \mathcal{P} and \mathcal{C} parity.
- Quantum numbers: \mathcal{J}^{PC} .
- QCD color sources separated by \vec{r} break SO(3) into SO(2) generated by $\vec{J} \cdot \vec{r}$.
- It breaks \mathcal{P} and \mathcal{C} into \mathcal{CP} .
- $V_{\Lambda}(r)$: Λ labelled by cylindrical symmetry $(D_{\infty h})$ representation.
 - $\left| \vec{J} \cdot \vec{r} \right| \equiv \lambda = 0, 1, 2, ...$ or $(\Sigma, \Pi, \Delta, ...)$.
 - CP parity: $\eta = +1$ (g), -1 (u)
 - ullet Reflection symmetry about a plane containing static sources: $\epsilon=\pm 1$
- All together: $\Lambda_{\eta}^{\epsilon}$.

Short distance behaviour

$r \rightarrow 0$

- QCD symmetries restored.
- Gluelumps with definite J^{PC} quantum numbers.
- Potentials: Perturbative (expanded in powers of $\alpha_s(1/r)$) + Nonperturbative corrections (expanded in powers of r).

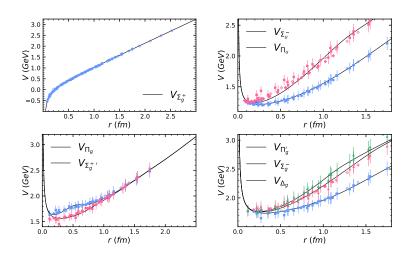


Long distance behaviour

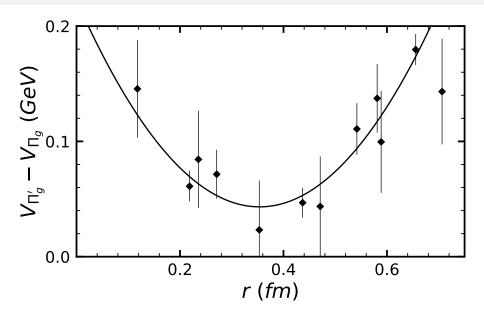
$r \to \infty$

- Potentials form multiplets at large r whose differences decrease as 1/r.
- The difference between potentials within a multiplet decreases as higher powers of 1/r.
- consistent with relativistic string excitation:

$$V_N(r) = \sqrt{\sigma^2 r^2 + 2\pi \left(N - \frac{1}{12}\right)\sigma}.$$


Setting the scale

```
Juge, Kuti Morningstar (JKM) (arXiv:2207.09365);
Schlosser Wagner (SW) (arXiv:2111.00741);
Capitani, Philipsen, Reisinger, Riehl Wagner (CPRRW) (arXiv:1811.11046);
Bicudo, Cardoso Sharifian (arXiv:2105.12159);
Sharifian, Cardoso, Bicudo (arXiv:2303.15152).
```


Scaling and shifting data

- Good scale:
 - Well-defined.
 - Low numerical effort.
 - Small systematic uncertainty.
- String tension: $V_{\Sigma_{\sigma}^+}(r) \longrightarrow \sigma r$ as $r \to \infty$.
- Sommer scale (hep-lat/9310022):
 - Definition: $r^2 \frac{dV_{\Sigma_g^+}(r)}{d(r)}|_{r=r_0} = 1.65$.
 - replace the string tension for pure gauge theories.

Potentials with fits

Avoided crossing

Summary

- Exotic hadrons and quick look into the BOEFT and its quantum numbers.
- Short and long distance behavior of B-O potentials.
- The Sommer scale.
- Fitted data.
- Avoided crossing.