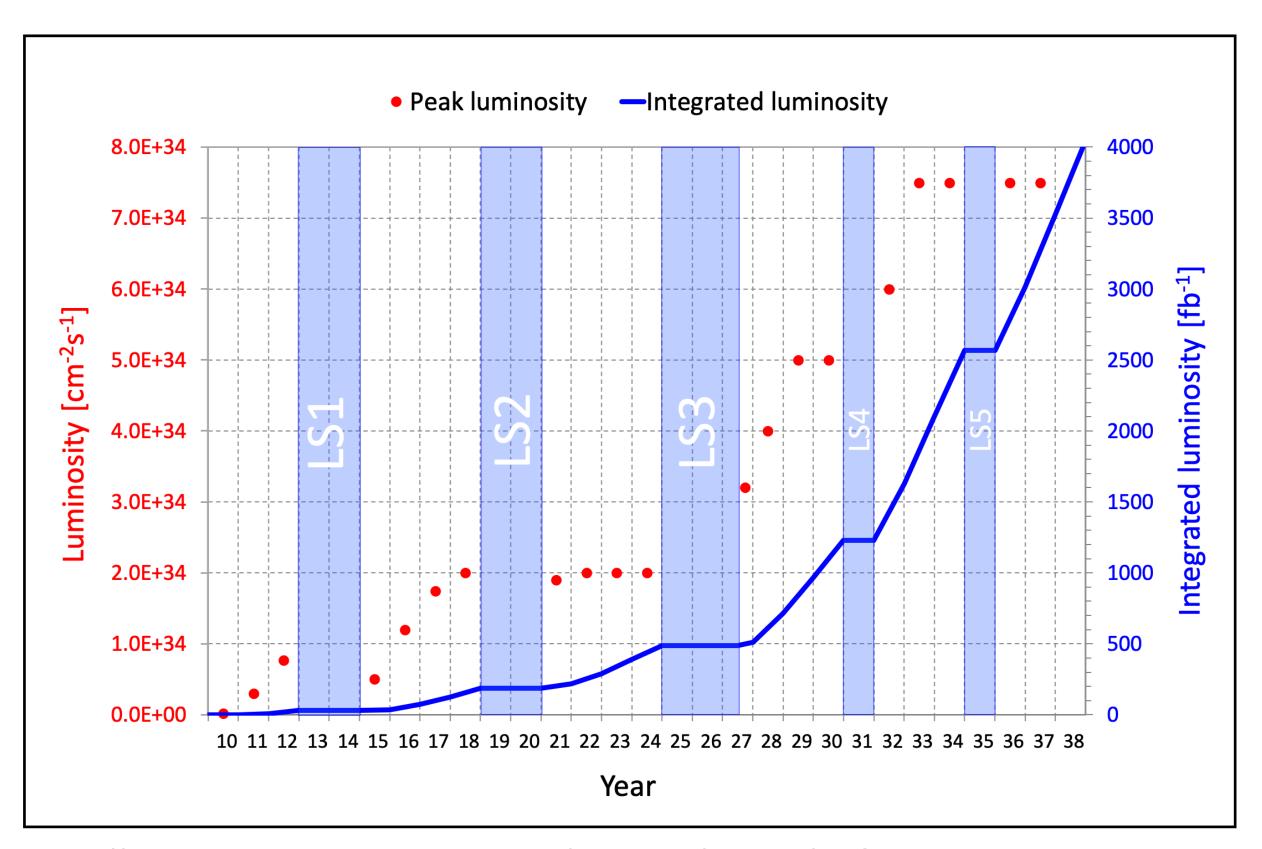
The versatility of flow-based fast calorimeter surrogate models

lan Pang

May 14, 2024 DPF-Pheno, Pittsburgh

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih [2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

Calorimeter shower simulation is major bottleneck in LHC computational pipeline!



ATLAS Preliminary 2022 Computing Model - CPU: 2031, Conservative R&D 24% Tot: 33.8 MHS06*y 5% Data Proc MC-Full(Sim) MC-Full(Rec) MC-Fast(Sim) 8% MC-Fast(Rec) EvGen 11% Heavy Ions Data Deriv MC Deriv 17% **Analysis** 8%

https://lhc-commissioning.web.cern.ch/schedule/images/LHC-ultimate-lumi-projection.png

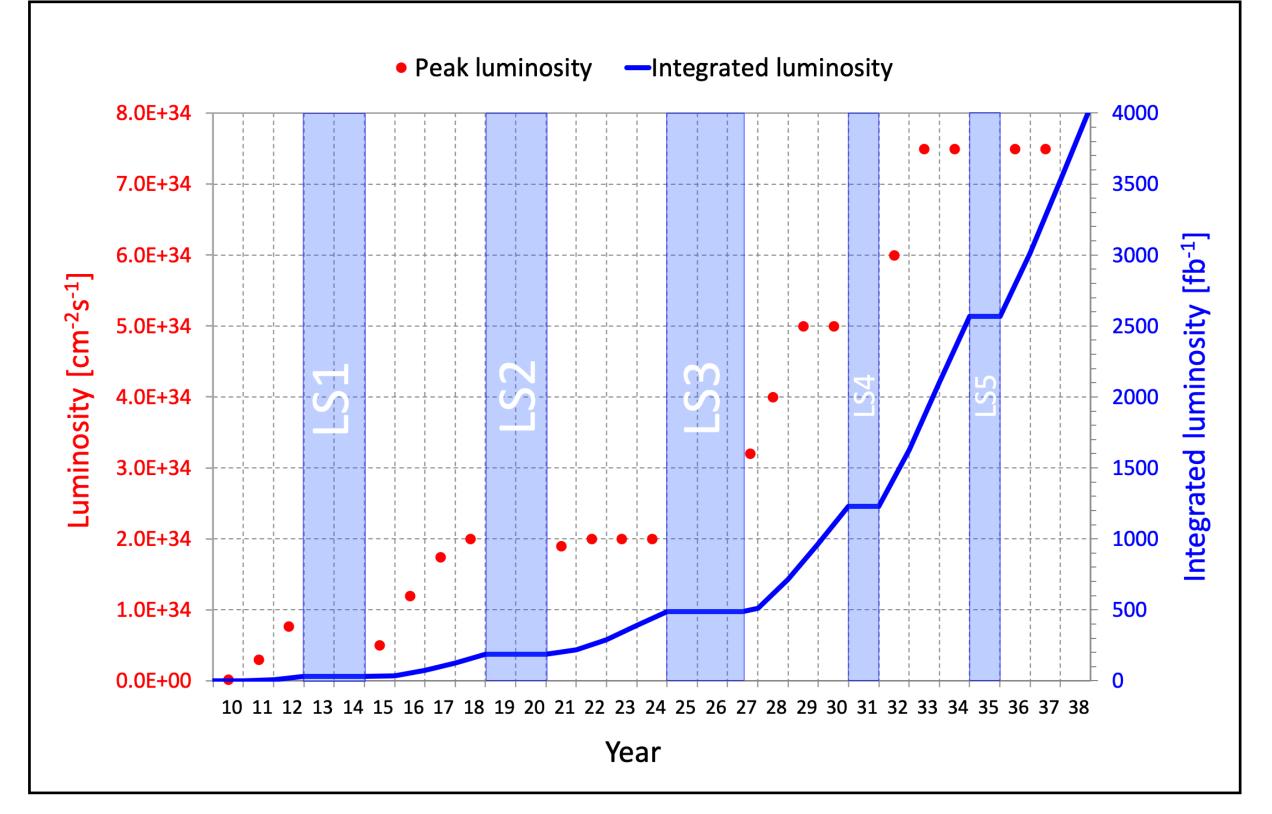
CERN-LHCC-2022-005

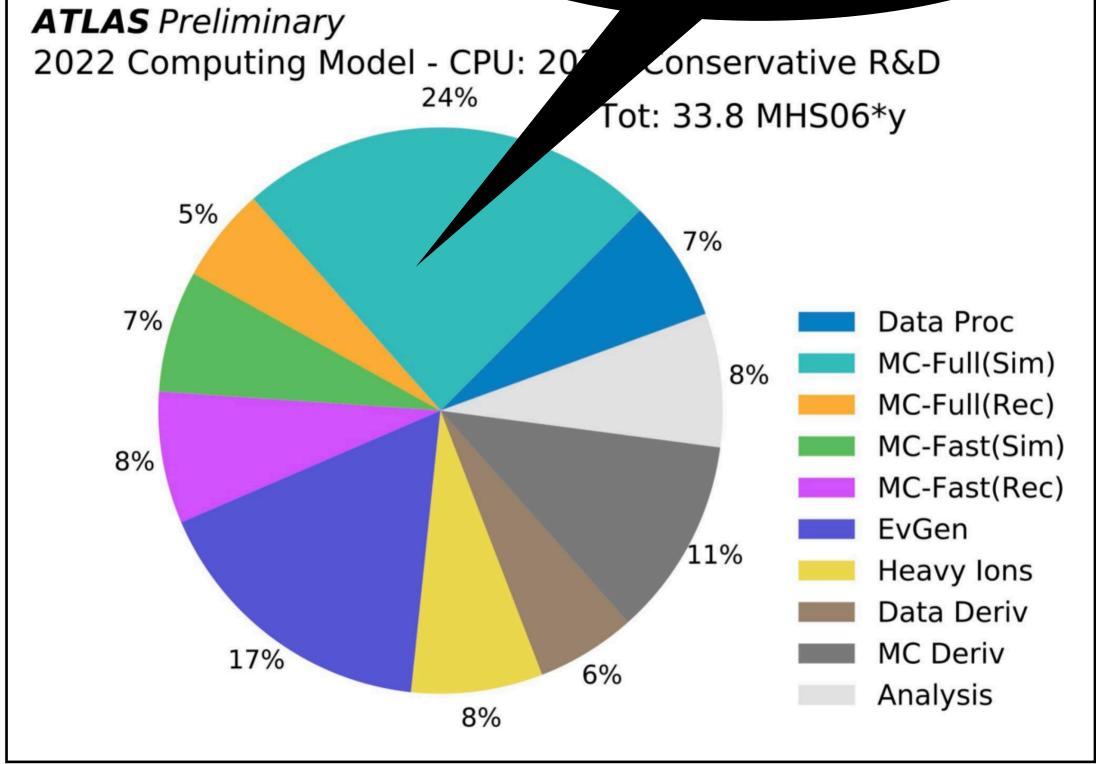
Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

MC to compare measurement to theory

TLAS Preliminary

022 Computing Model - CPU: 20 Conservative R&D



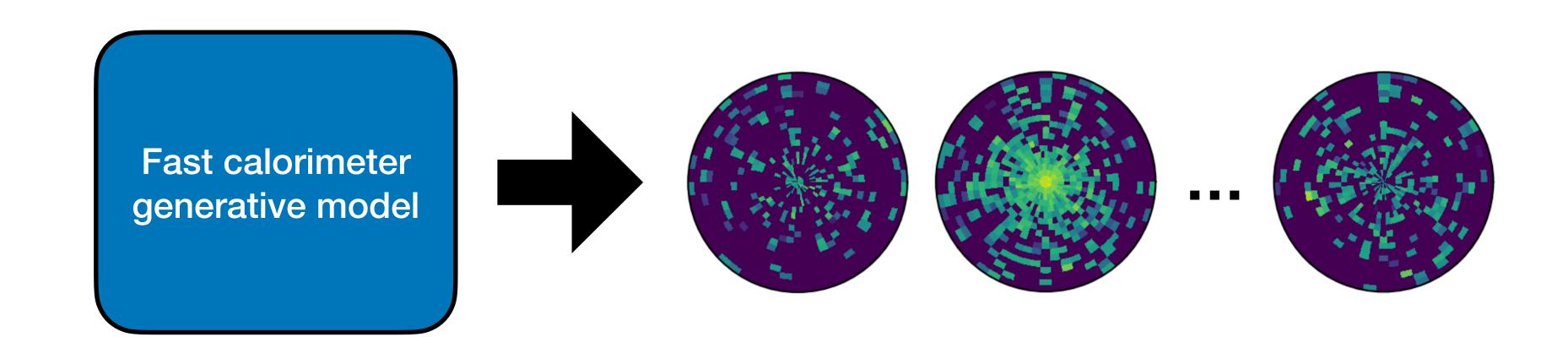


https://lhc-commissioning.web.cern.ch/schedule/images/LHC-ultimate-lumi-projection.png

CERN-LHCC-2022-005

Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

Surrogate modeling to **speed up** generation of expensive GEANT4 calorimeter showers



Many different approaches tested on this task!

- GANs (e.g. 1712.10321, 2309.06515)
- VAEs (e.g. 2211.15380, 2312.09290)
- Normalizing flows (e.g. 2106.05285, 2302.11594)
- Diffusion (e.g. 2308.03847, 2308.03876)

(Stay tuned for CaloChallenge summary paper which compares the various approaches)

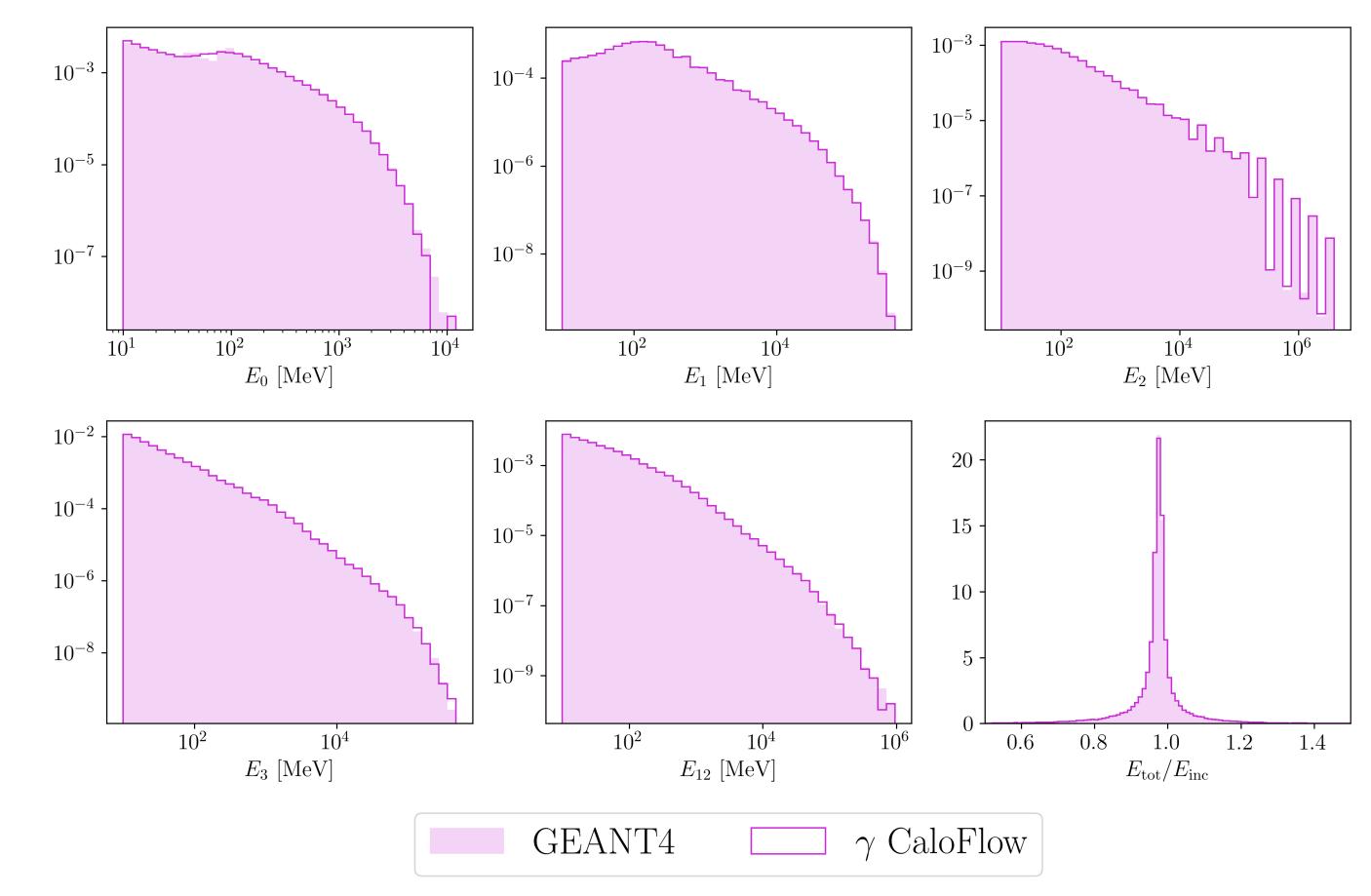
Fast Calorimeter Simulation Challenge 2022

View on GitHub

Many different approaches tested on this task!

- GANs
- VAEs
- Normalizing flows
- Diffusion*

Access to likelihood!



 $\mathcal{O}(10^4) - \mathcal{O}(10^5)$ times faster than GEANT4

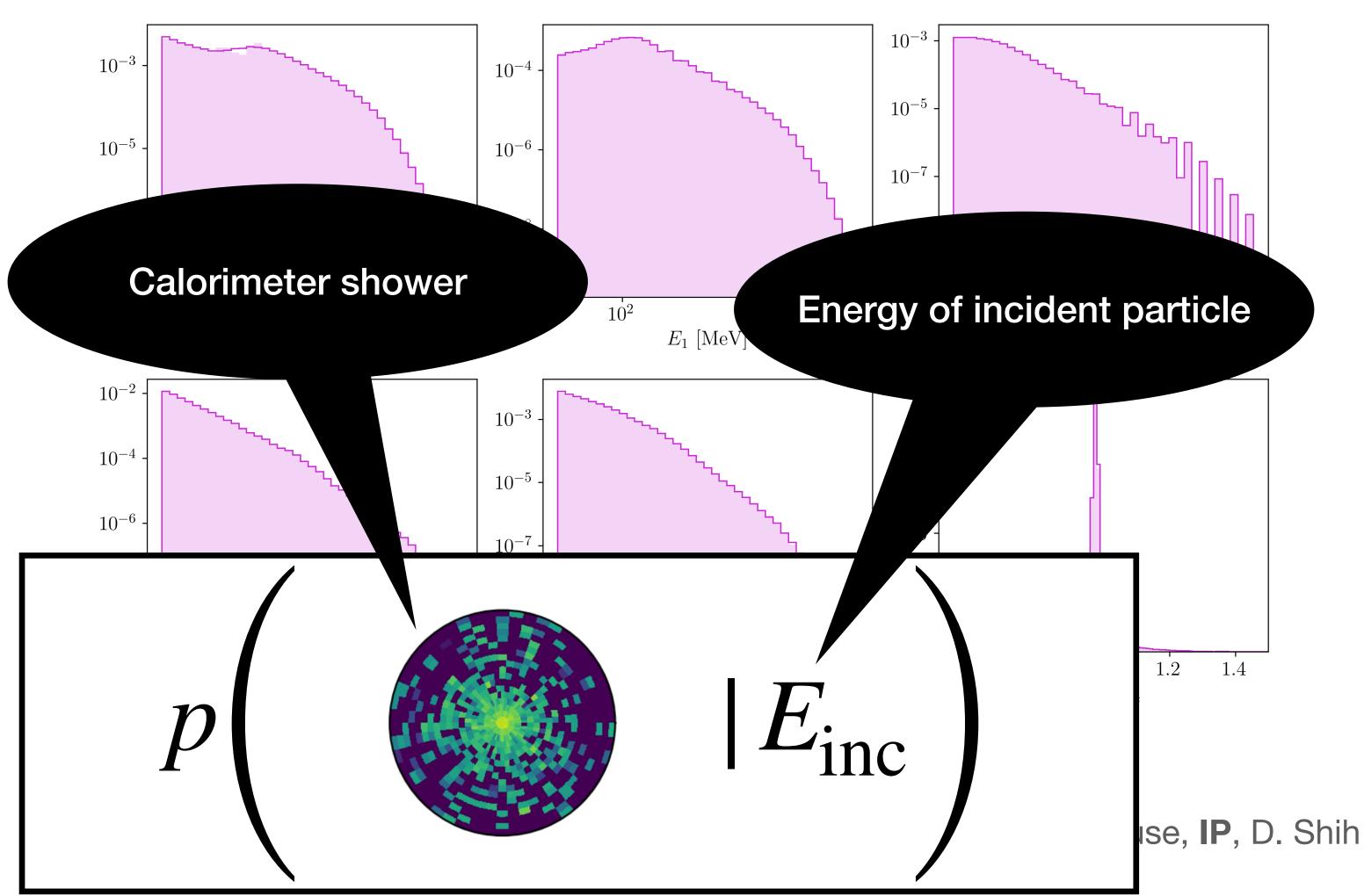
[2210.14245] C. Krause, IP, D. Shih

^{*} Likelihood may be obtained from diffusion models as well. However, it is often more difficult to do so.

Many different approaches tested on this task!

- GANs
- VAEs
- Normalizing flows
- Diffusion*

Access to likelihood!



^{*} Likelihood may be obtained from diffusion models as well. However, it is often more difficult to do so.

Once we have a trained flow-based fast calorimeter model, we get ...

1. A regression/calibration model

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

infers the particle incident energy

2. An <u>anomaly detector</u>

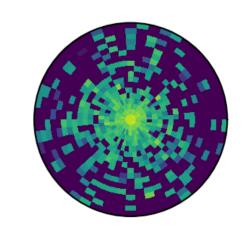
[2312.11618] C. Krause, B. Nachman, IP, D. Shih

sensitive to new physics

All for free!

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

Given

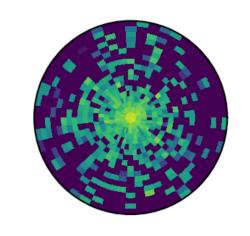


, we want to infer E_{inc}

Perform maximum likelihood estimation (MLE) with p

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

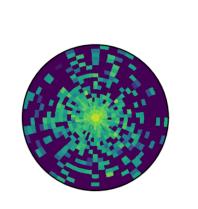
Given



, we want to infer $\,E_{
m inc}$

Perform maximum likelihood estimation (MLE) with p

Here we consider energy of incident π^+

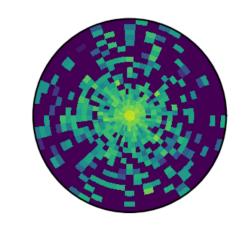


 $|E_{\rm inc}|$

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

Here we consider energy of incident π^+

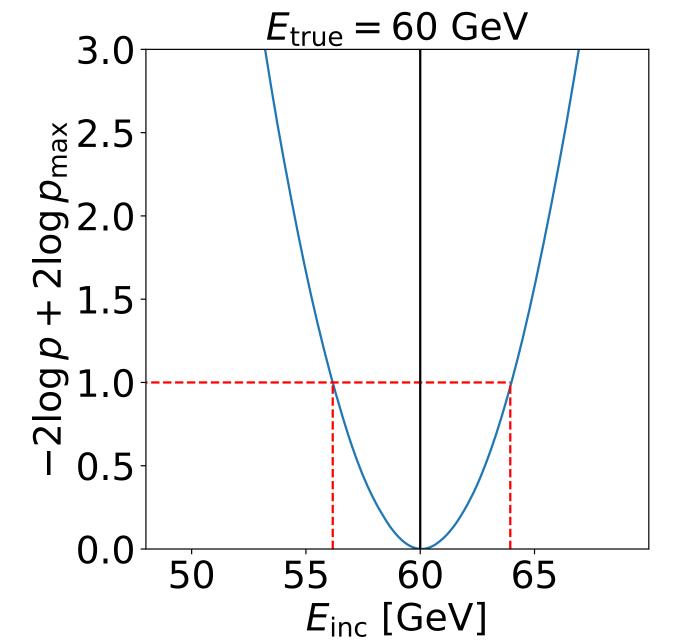
Given



, we want to infer

$$E_{\rm inc}$$

Perform maximum likelihood estimation (MLE) with p $|E_{\rm inc}|$

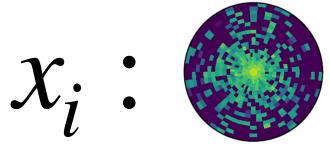


- $p\left(\begin{array}{c} |E_{\text{inc}} \rangle \end{array}\right)$: Blue curve
- True $E_{
 m inc}$: Solid vertical line
- Boundary of 68% CI: Red vertical lines

Limitations of mean square error (MSE) calibration

Want to regress z_i given x_i

Loss function:
$$L[f] = \sum_{i} (f_{\text{MSE}}(x_i) - z_i)^2$$
,



 $z_i : E_{\text{inc}}$

Limitations of mean square error (MSE) calibration

Want to regress z_i given x_i

Loss function:
$$L[f] = \sum_{i} (f_{\text{MSE}}(x_i) - z_i)^2$$
,

$$f_{\text{MSE}}(x) = \langle Z | X = x \rangle$$

$$= \int dz \, z \, p_{Z|X}^{\text{train}}(z | x)$$

$$= \int dz \, z \, p_{X|Z}^{\text{train}}(x | z) \, \frac{p_Z^{\text{train}}(z)}{p_X^{\text{train}}(x)}$$

 X_i :

 $z_i : E_{\text{inc}}$

Prior dependent!

Limitations of mean square error (MSE) calibration

Want to regress z_i given x_i

Loss function:
$$L[f] = \sum_{i} (f_{\text{MSE}}(x_i) - z_i)^2$$
,

 $f_{MSE}(x) = \langle Z | X = x \rangle$

$$= \int dz \, z \, p_{Z|X}^{\mathsf{train}}(z \,|\, x)$$

Only point estimate! (No uncertainty quantification)

$$= \int dz \, z \, p_{X|Z}^{\text{train}}(x \mid z) \frac{p_Z^{\text{train}}(z)}{p_X^{\text{train}}(x)}$$

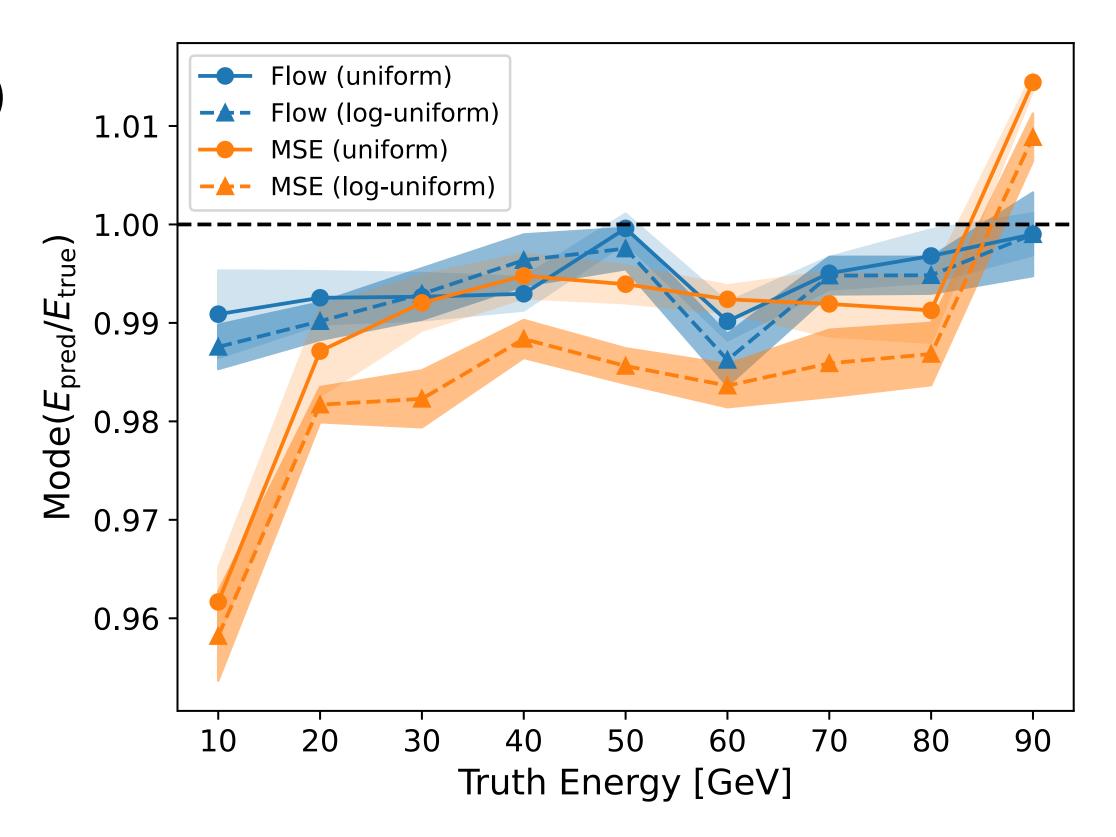
 z_i : $E_{\rm inc}$

Prior dependent!

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

1. MLE (flow) calibration is independent of the prior $p(E_{\rm inc})$

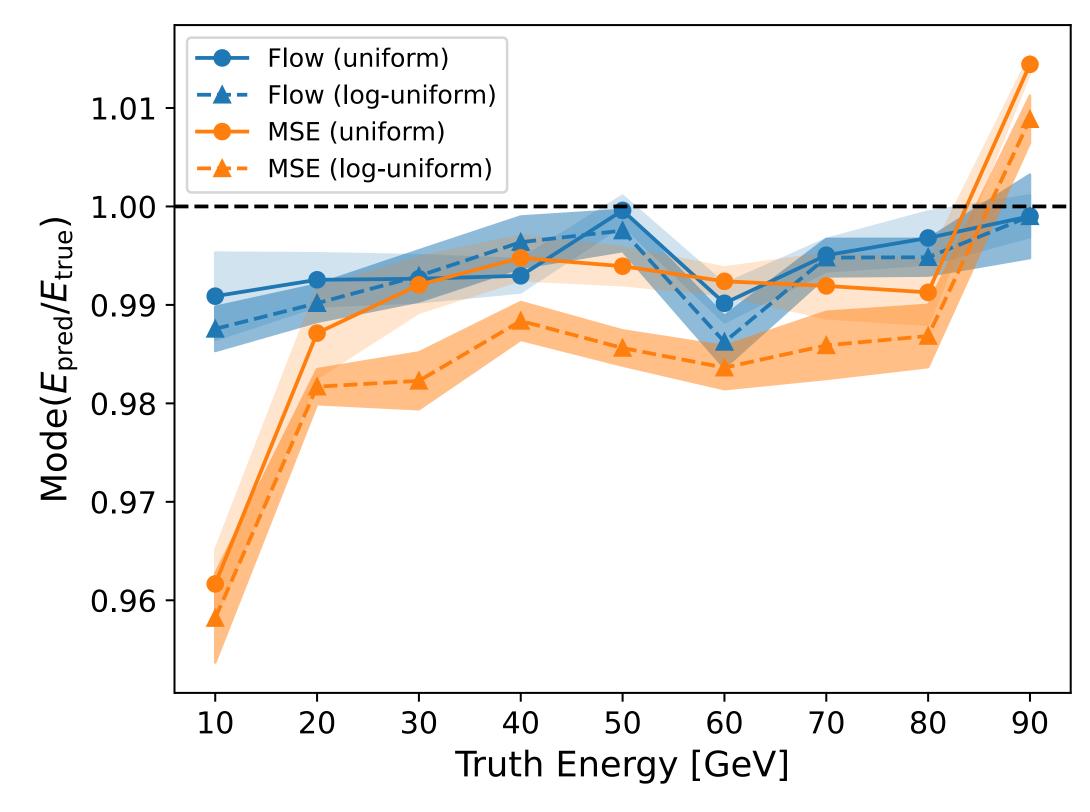
- MSE-based calibration depends on $p(E_{
 m inc})$
- Our calibration is less biased!
 - **Bias**: Deviation of <u>average</u> prediction from true answer



[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

1. MLE (flow) calibration is independent of the prior $p(E_{\rm inc})$

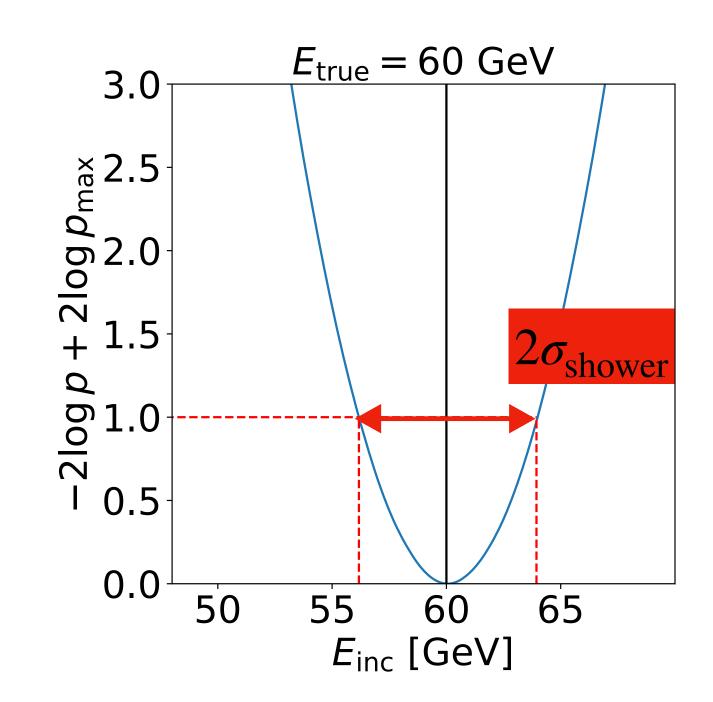
- MSE-based calibration depends on $p(E_{
 m inc})$
- Our calibration is less biased!
 - **Bias**: Deviation of <u>average</u> prediction from true answer
 - Mode (average) of $p(E_{\rm pred}/E_{\rm true})$ at fixed $E_{\rm true}$ closer to 1



[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

2. Access to per-shower resolution $\sigma_{ m shower}$

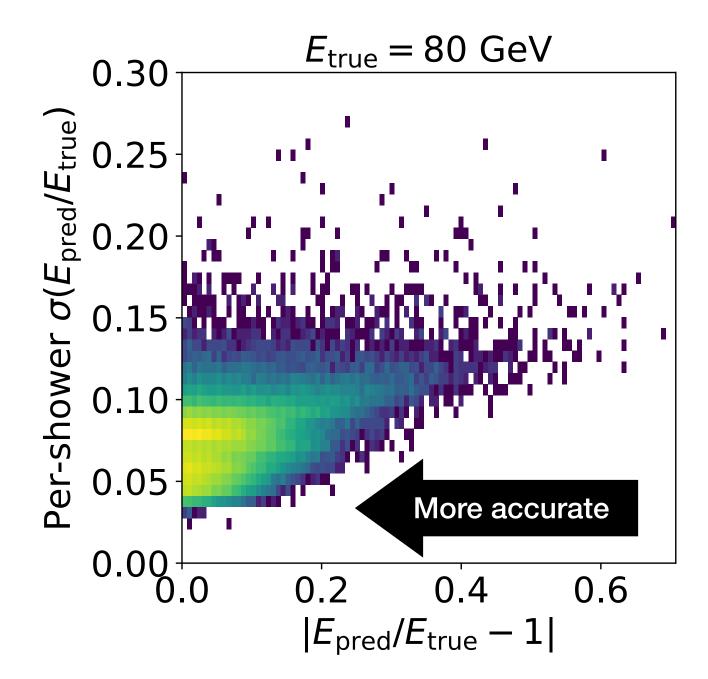
- MSE-based calibration gives point estimates (no uncertainty quantification)
- Reliable per-shower resolution

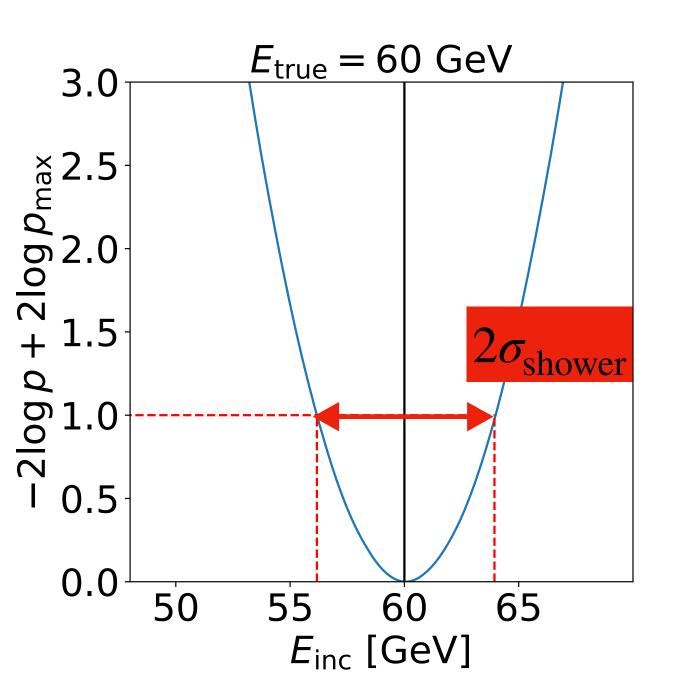


[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

2. Access to per-shower resolution $\sigma_{ m shower}$

- MSE-based calibration gives point estimates (no uncertainty quantification)
- Reliable per-shower resolution





[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Flow trained to maximize $p\left(\bigcirc | E_{inc} \right)$ for incident SM particle (e.g. photon)

Detect BSM anomalies by making cut on p $|E_{\rm inc}|$

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Flow trained to maximize $p\left(\bigcirc | E_{\text{inc}} \right)$ for incident SM particle (e.g. photon)

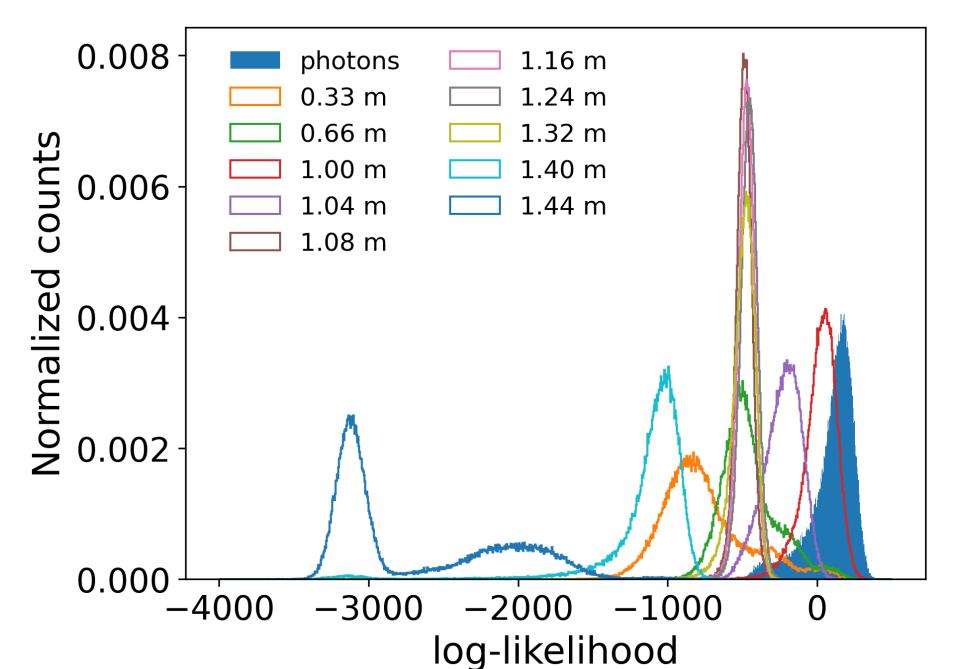
Detect BSM anomalies by making cut on p $|E_{\rm inc}|$

No access to $E_{\rm inc}$: Use reconstructed energy $E_{\rm inc}^{\rm (rec)} = \lambda E_{\rm dep}$

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Flow trained to maximize $p\left(\bigcirc | E_{\text{inc}} \right)$ for incident SM particle (e.g. photon)

Detect BSM anomalies by making cut on p



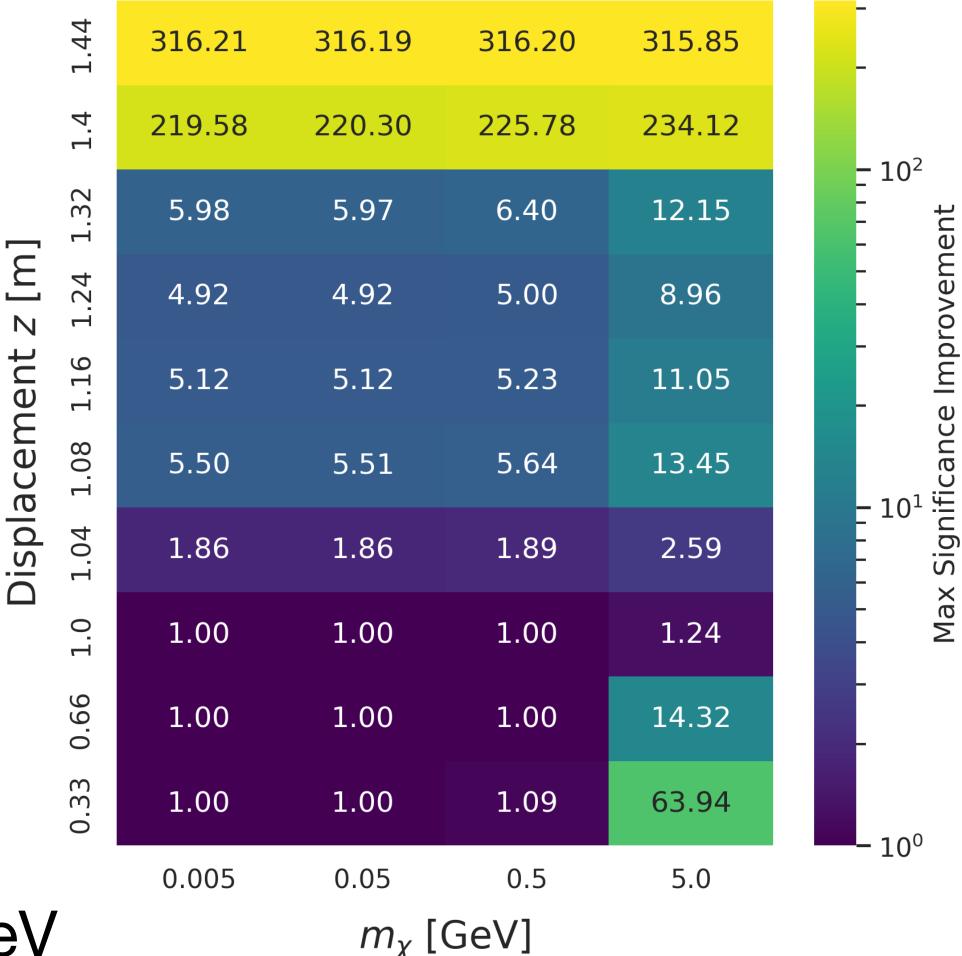
- Invisible pseudoscalar particle χ
- $\chi \rightarrow \gamma \gamma$ (highly boosted)
 - Consider different masses and lifetimes

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Unsupervised anomaly detection

- Relatively model-agnostic (only assumed photon showers)
- Able to distinguish a variety of anomalous showers from SM showers

Significance improvement = $\frac{\text{True positive rate}}{\sqrt{\text{False positive rate}}}$

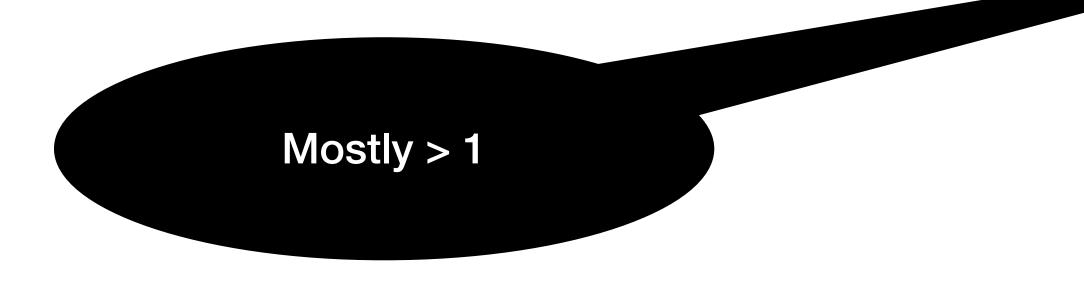


Energy of $\chi = 50$ GeV

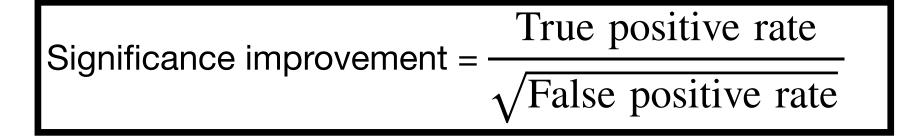
[2312.11618] C. Krause, B. Nachman, IP, D. Shih

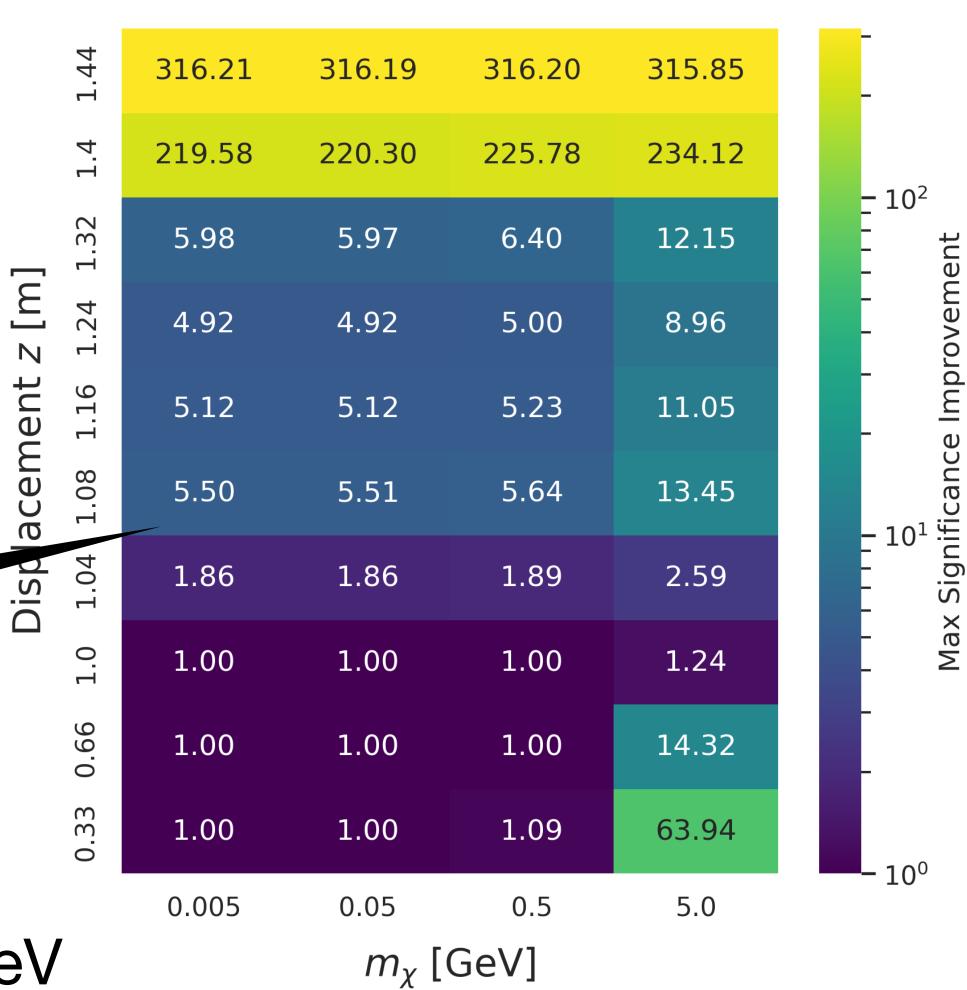
Unsupervised anomaly detection

- Relatively model-agnostic (only assumed photon showers)
- Able to distinguish a variety of anomalous showers from SM showers



Energy of $\chi = 50$ GeV





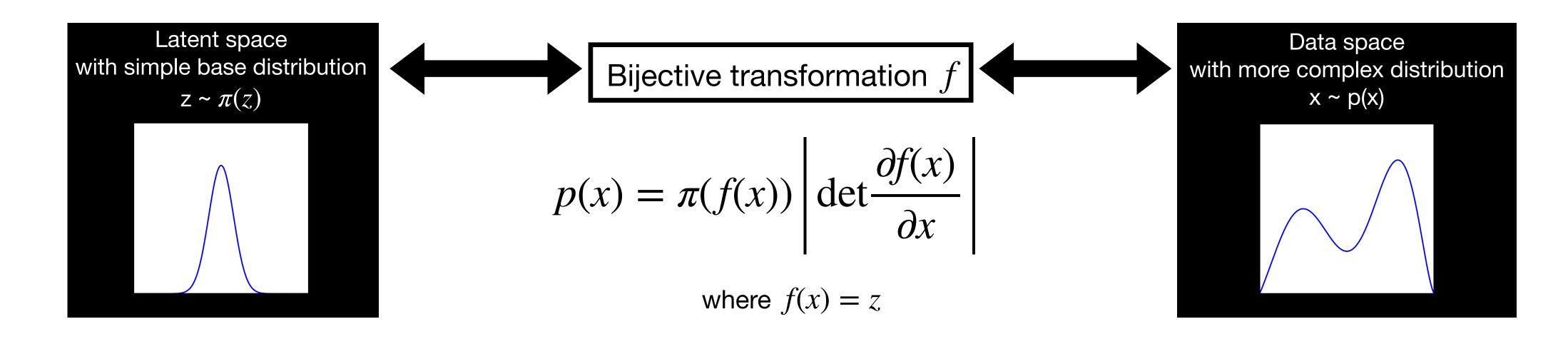
Conclusions

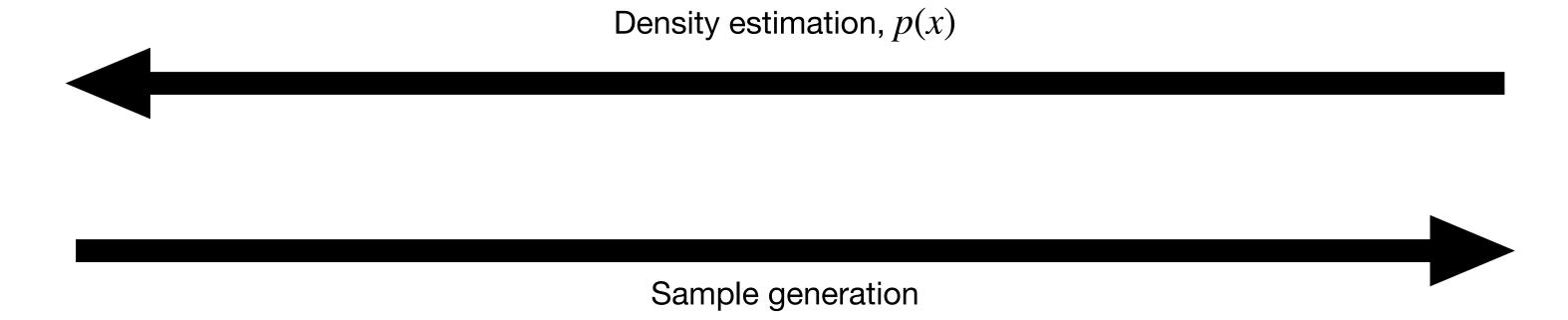
- Normalizing flows are state-of-the-art fast calorimeter surrogate models with access to the likelihood
- Flow-based fast calorimeter surrogate models can be repurposed to do calibration and anomaly detection
- Calibration model is less biased than typical direct regression and provides per-shower resolutions
- Unsupervised anomaly detection that is model agnostic

Thank you!

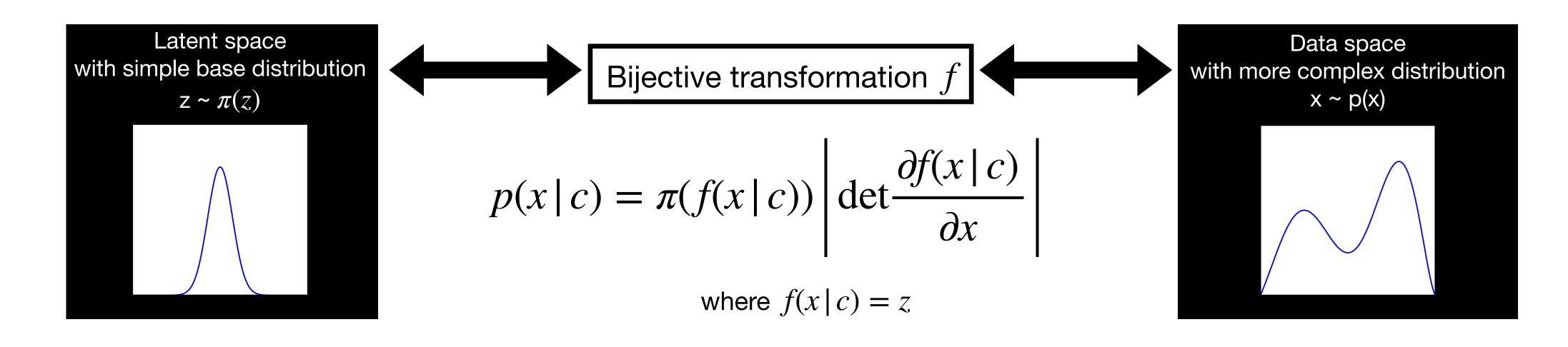
Backup

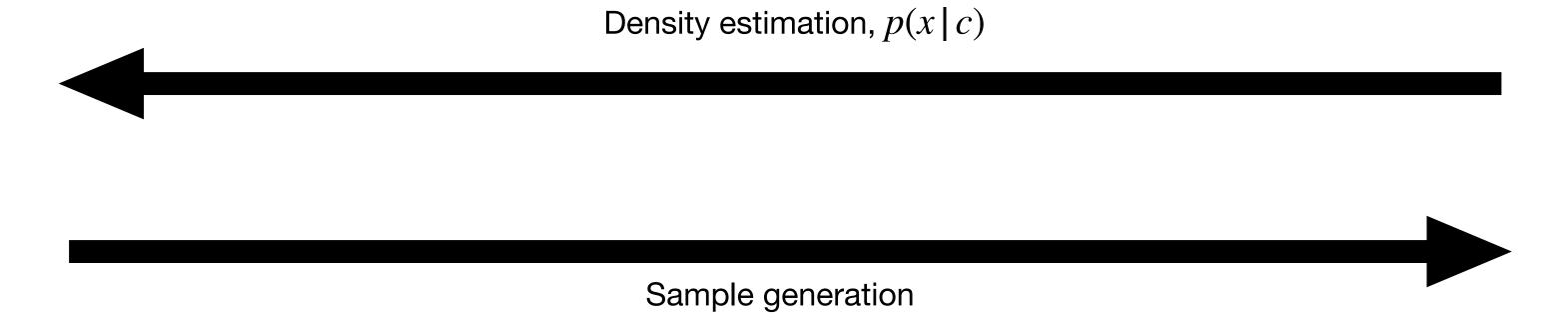
Normalizing Flows



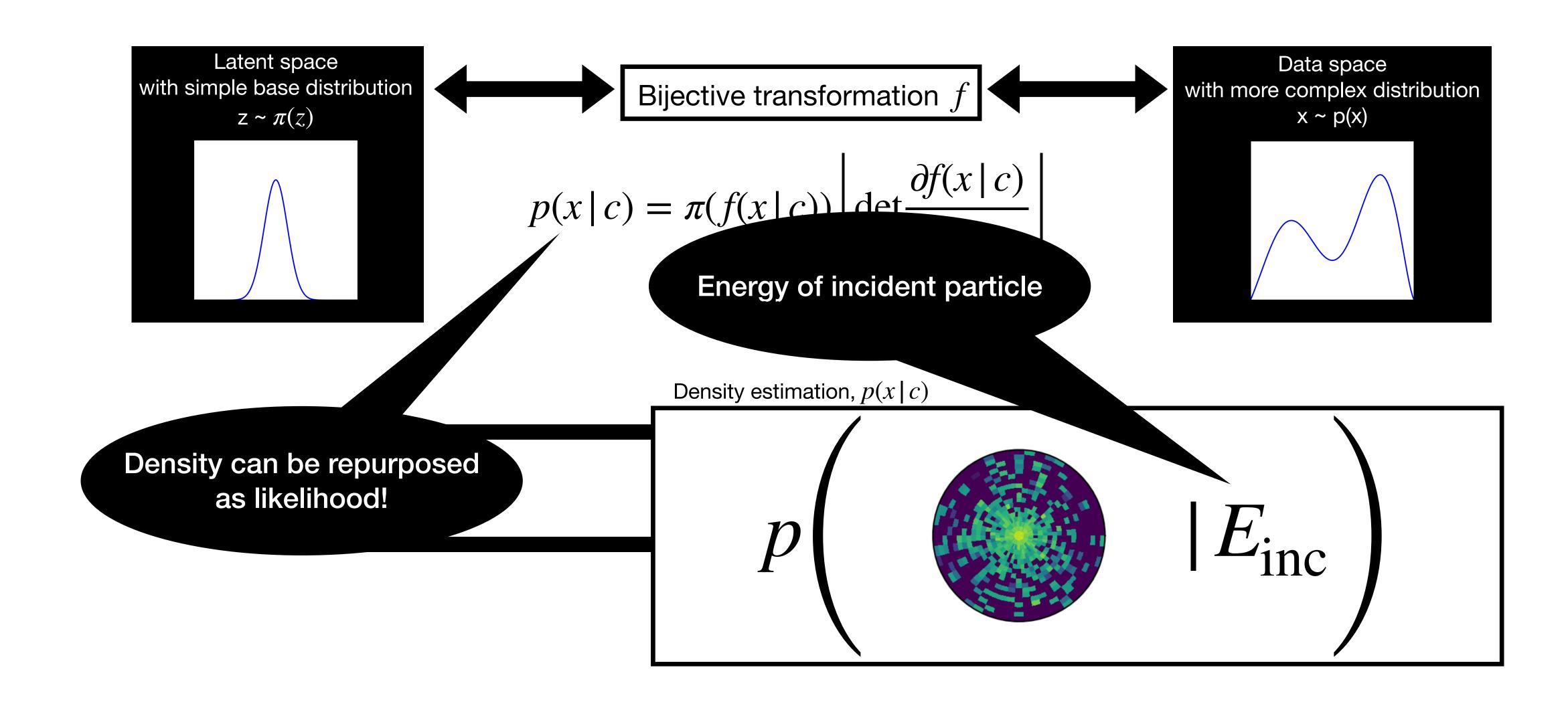


Normalizing Flows

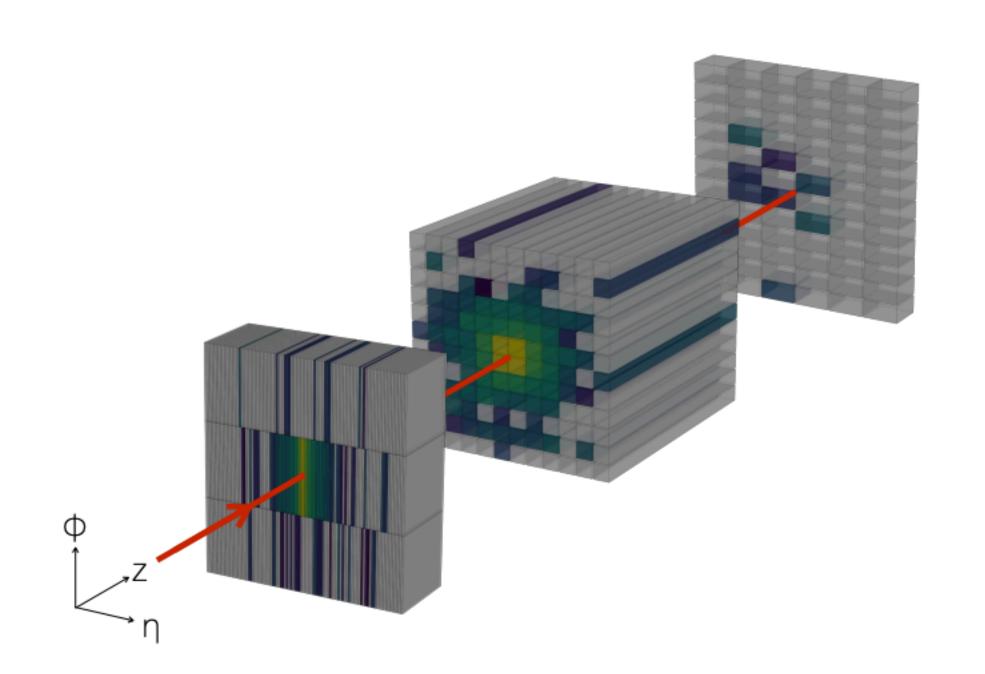




Normalizing Flows

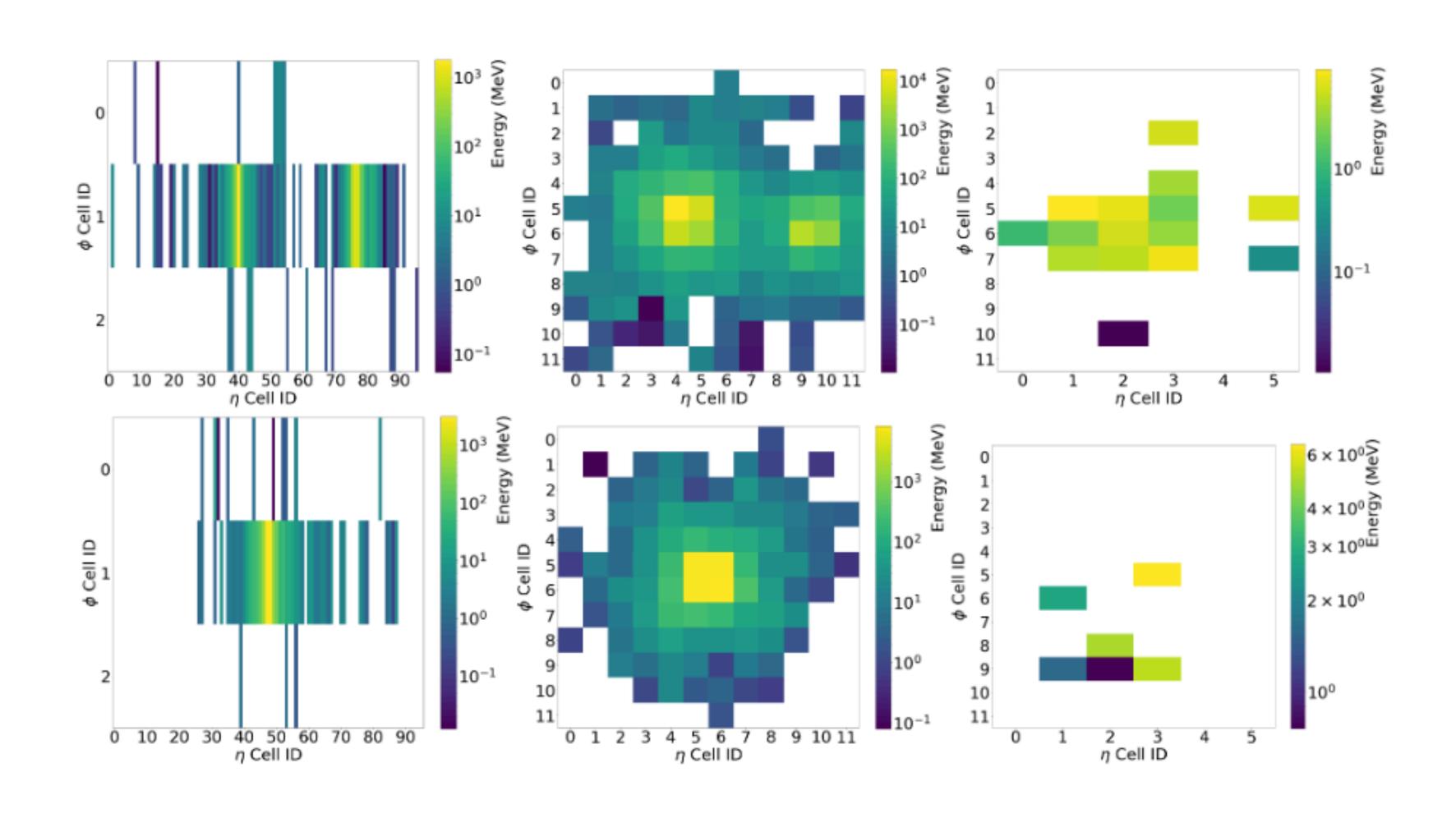


Calorimeter geometry (AD)



Layer	z length	η length	ϕ length	Number
index	(mm)	(mm)	(mm)	of voxels
0	90	5	160	3×96
1	347	40	40	12×12
2	43	80	40	12×6

Two energy blobs



Reconstructed $E_{\rm inc}$ (AD)

- . No a priori access to $E_{\rm inc}$: Use reconstructed energy $E_{\rm inc}^{\rm (rec)} = \lambda E_{\rm dep}$
- ullet Can imagine performing more sophisticated calibration to get $E_{
 m inc}^{
 m (rec)}$

Calorimeter geometry (calibration)

	Layer	z length	η length	ϕ length	Number
	index	(mm)	(mm)	(mm)	of voxels
ECAL	0	90	5	160	3×96
	1	347	40	40	12×12
	2	43	80	40	12×6
HCAL	3	375	20.83	666.67	3×96
	4	667	166.67	166.67	12×12
	5	958	333.33	166.67	12×6

Mode estimation (calibration)

- 1. Draw with replacement N samples from N values of $E_{\rm pred}$, where N is the number of showers in the evaluation dataset for a given fixed $E_{\rm true}$.
- 2. Perform kernel density estimation of the drawn samples with kernel bandwith determined using Scott's rule
- 3. Identify the position of the mode of the estimated density
- 4. Repeat steps 1-3 for a total of 20 times
- 5. Compute the mean and standard deviation of the 20 estimated values of the mode

Prior dependence of MSE (calibration)

$$L[f] = \sum_{i} (f_{\text{MSE}}(x_i) - z_i)^2,$$

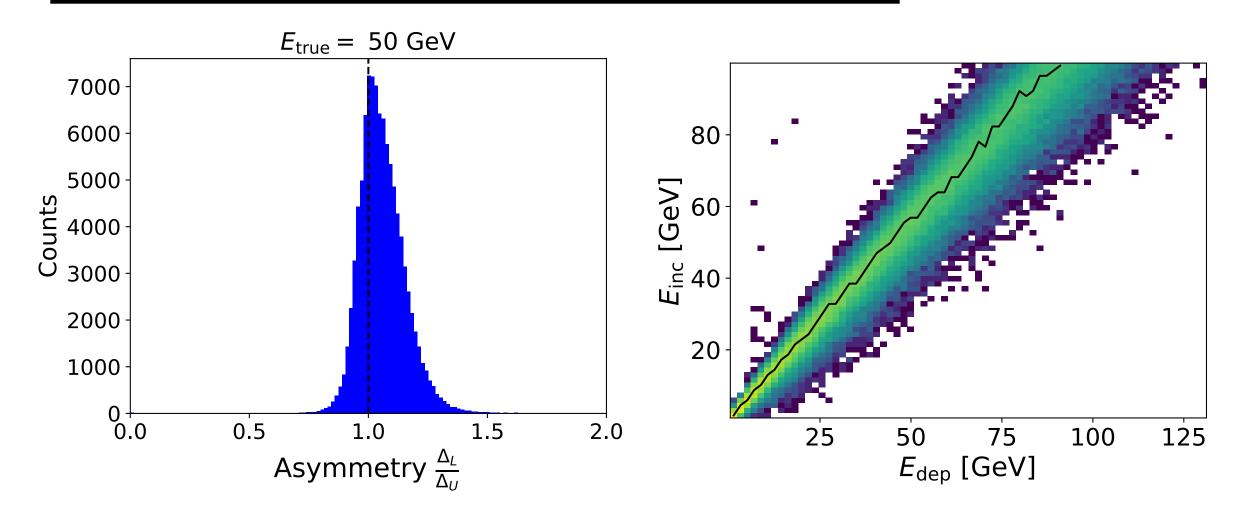
$$f_{\text{MSE}}(x) = \langle Z | X = x \rangle$$

$$= \int dz \, z \, p_{Z|X}^{\text{train}}(z | x)$$

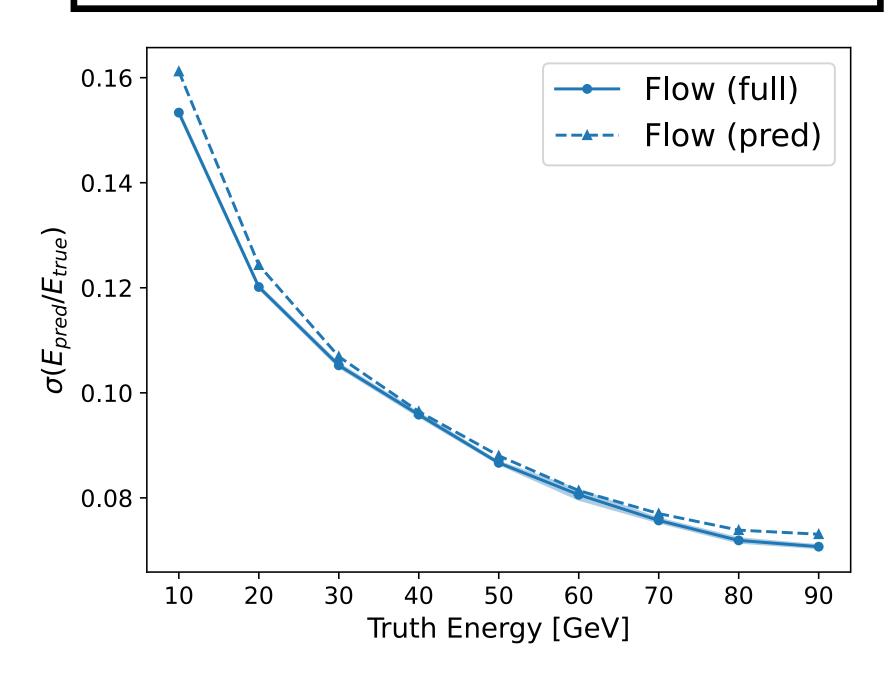
$$= \int dz \, z \, p_{X|Z}^{\text{train}}(x | z) \, \frac{p_Z^{\text{train}}(z)}{p_X^{\text{train}}(x)}$$

Resolution (calibration)

Able to predict asymmetric resolutions



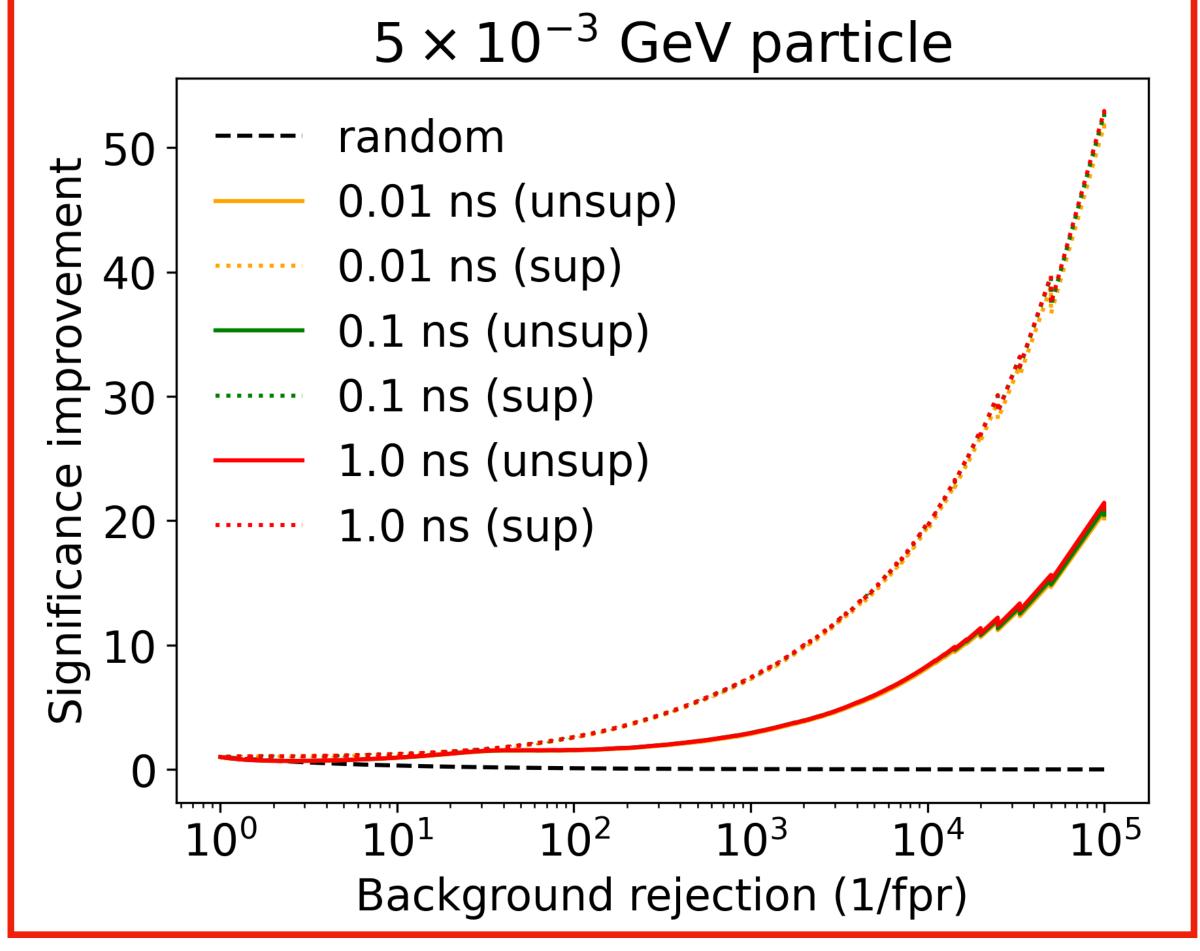
Mean predicted per-shower resolution agrees with full resolution

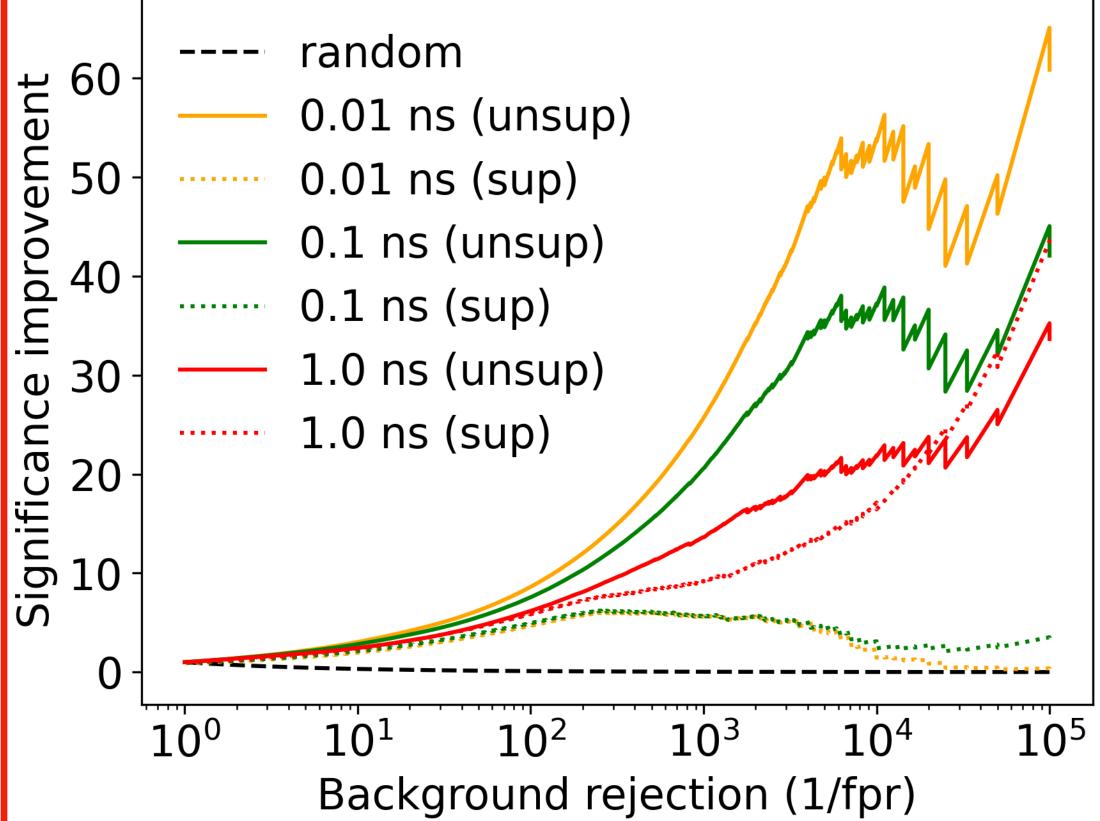


Significance improvement = $\frac{\text{True positive rate}}{\sqrt{\text{False positive rate}}}$

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Trained on $m_{\chi} = 5 \times 10^{-3}$ GeV, lifetime = 1 ns:

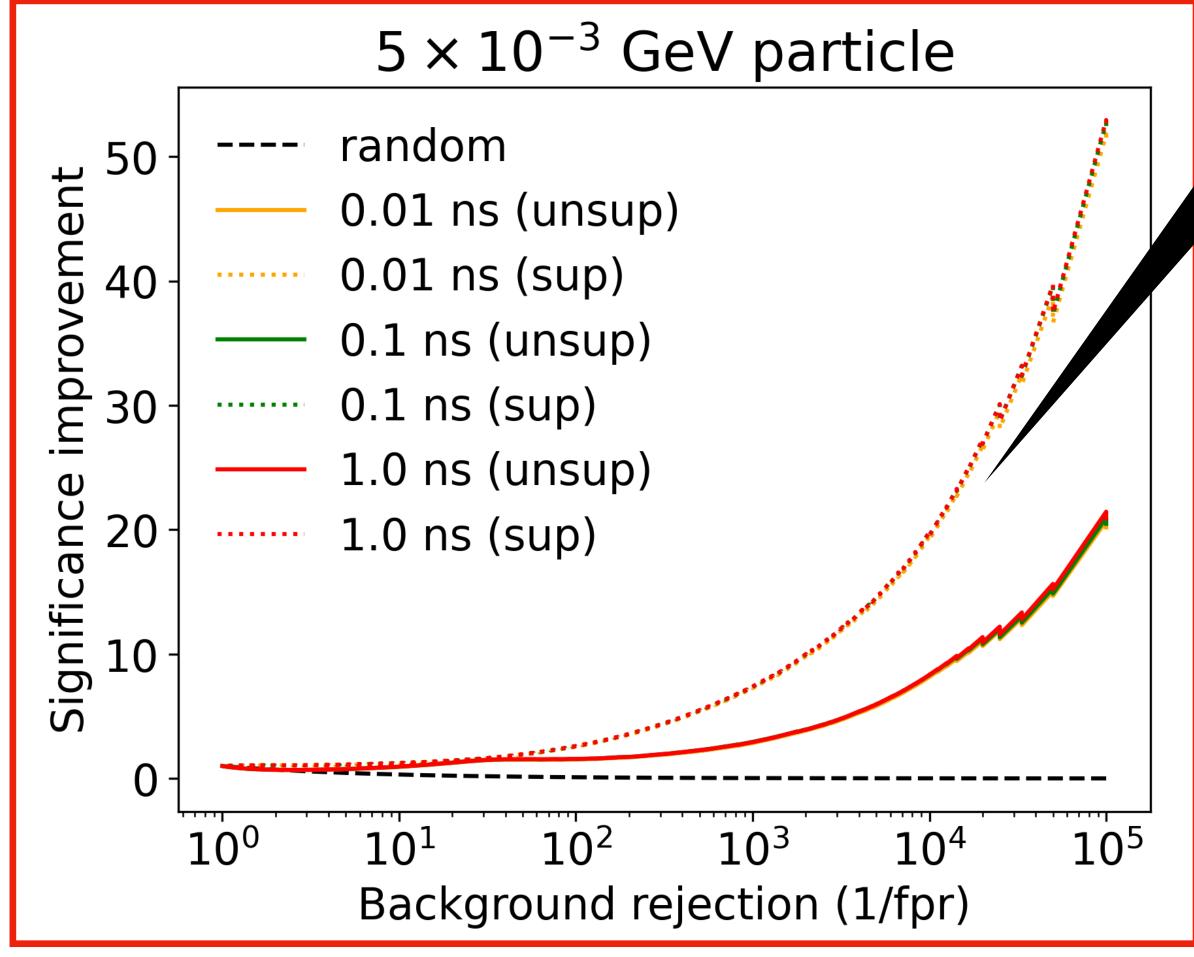


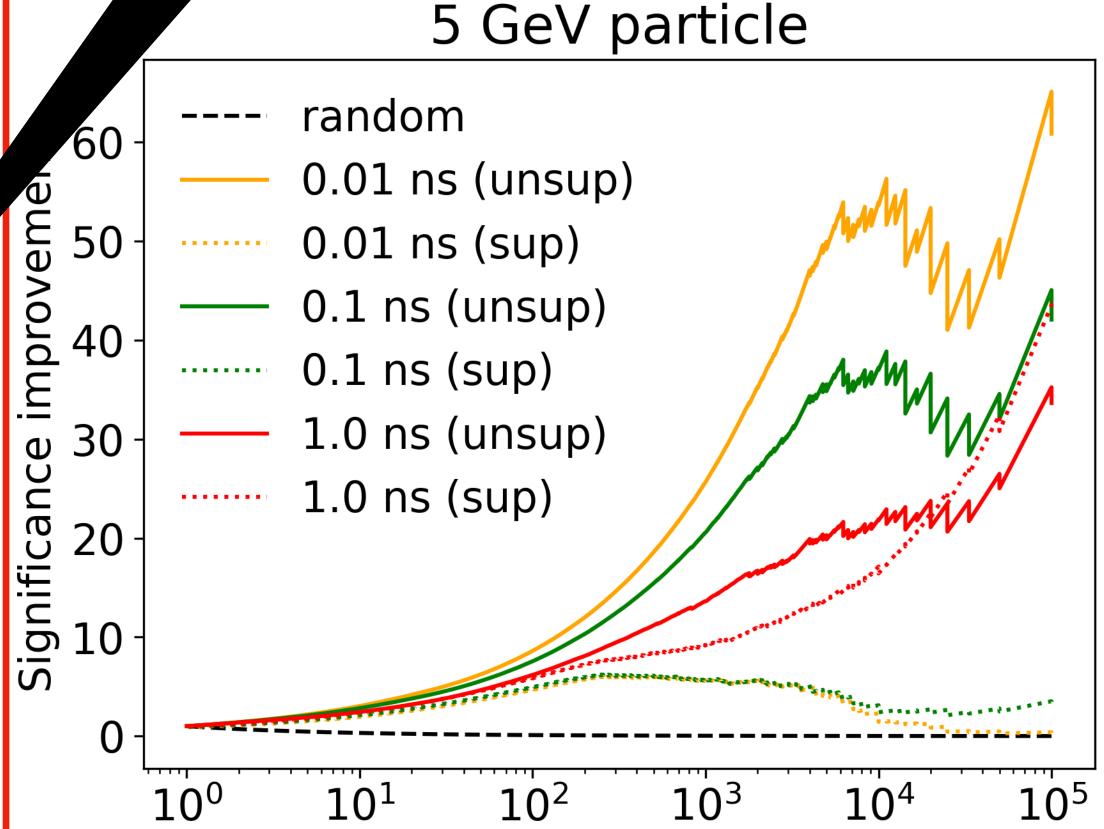


[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Supervised outperforms unsupervised

Trained on $m_{\chi} = 5 \times 10^{-3}$ GeV, lifetime





Background rejection (1/fpr)

Significance improvement =

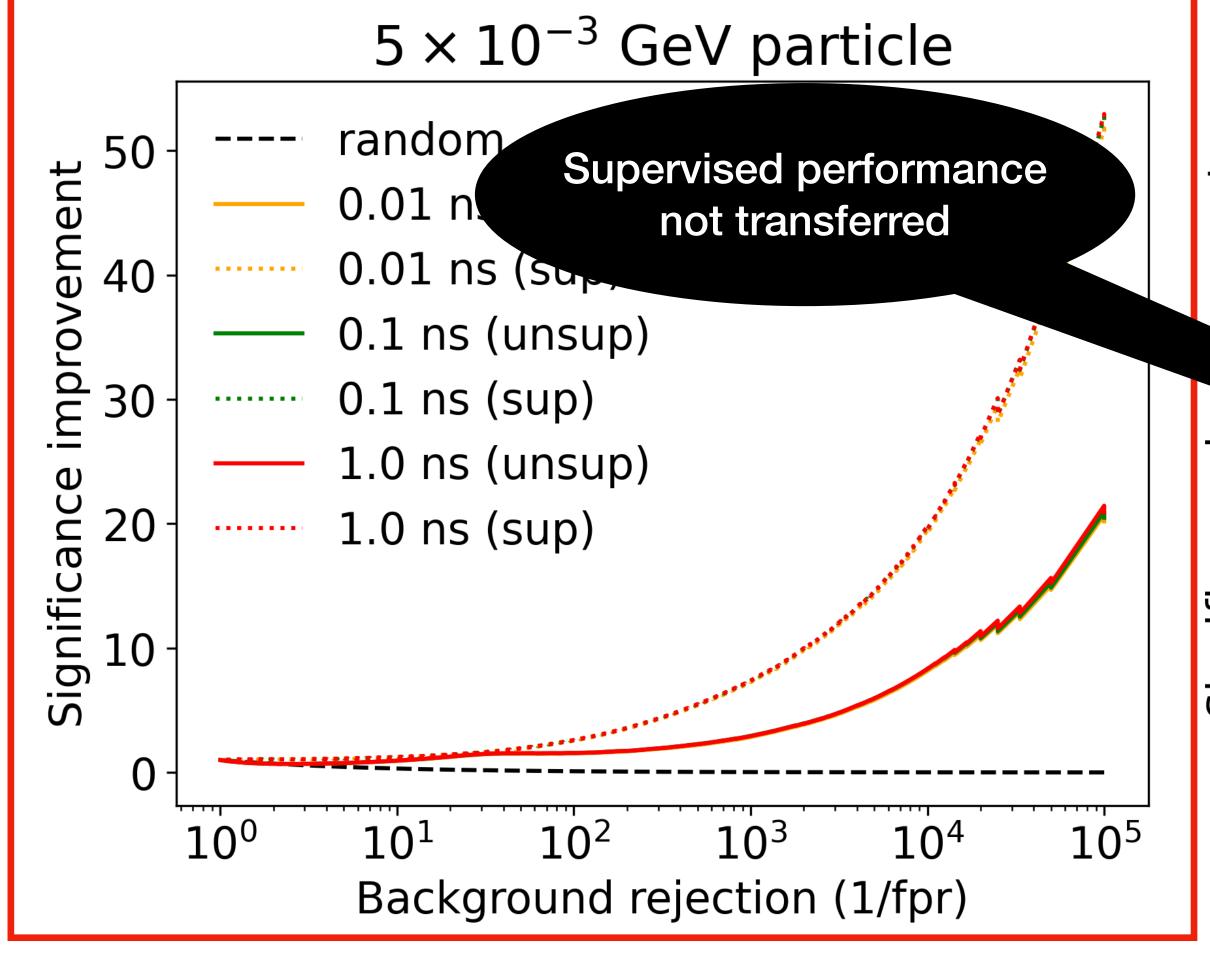
True positive rate

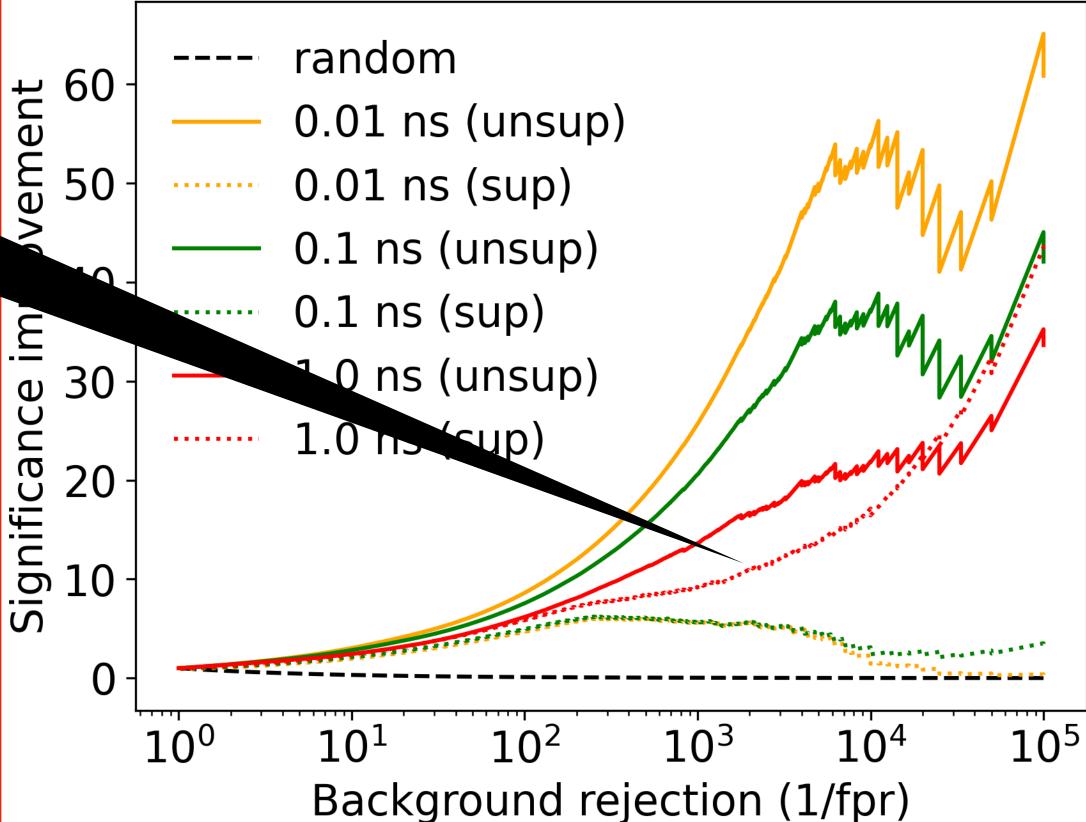
 $\sqrt{\text{False positive rate}}$

Significance improvement = $\frac{\text{True positive rate}}{\sqrt{\text{False positive rate}}}$

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

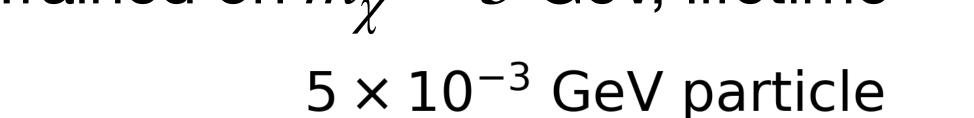
Trained on $m_{\chi} = 5 \times 10^{-3}$ GeV, lifetime = 1 ns:

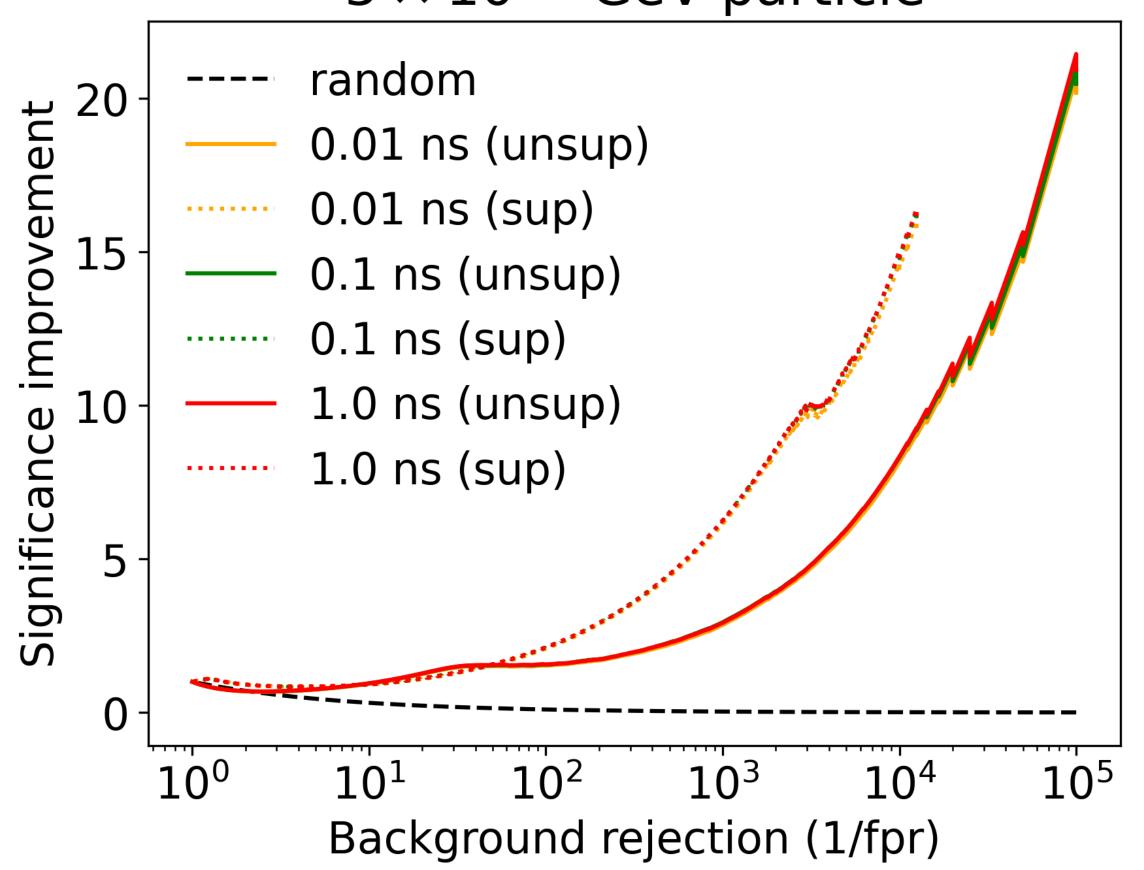


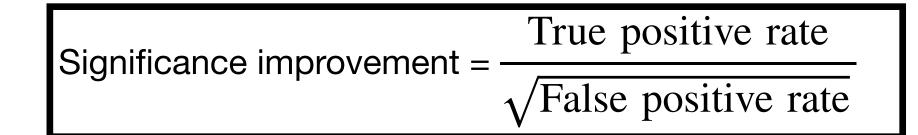


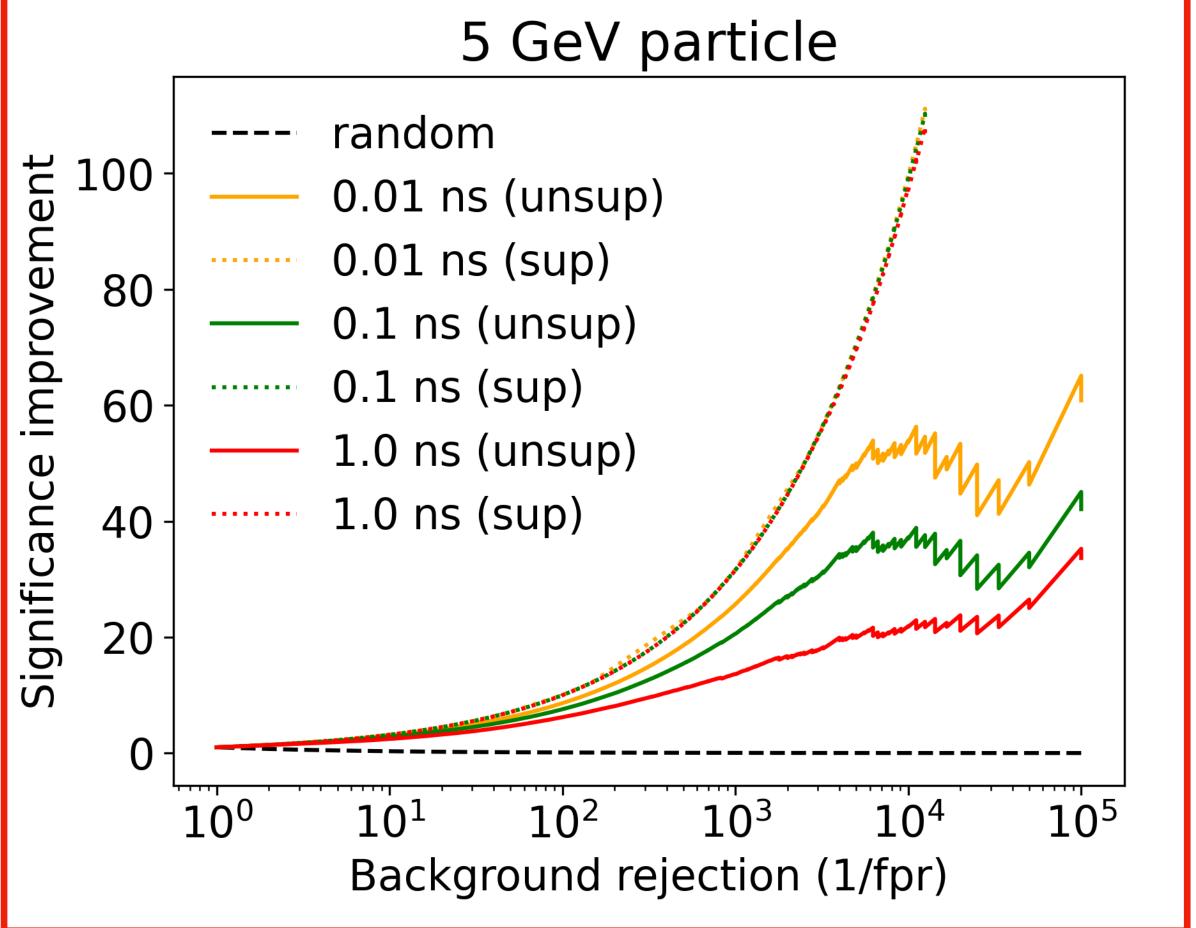
[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Trained on $m_{\chi} = 5$ GeV, lifetime = 1 ns:





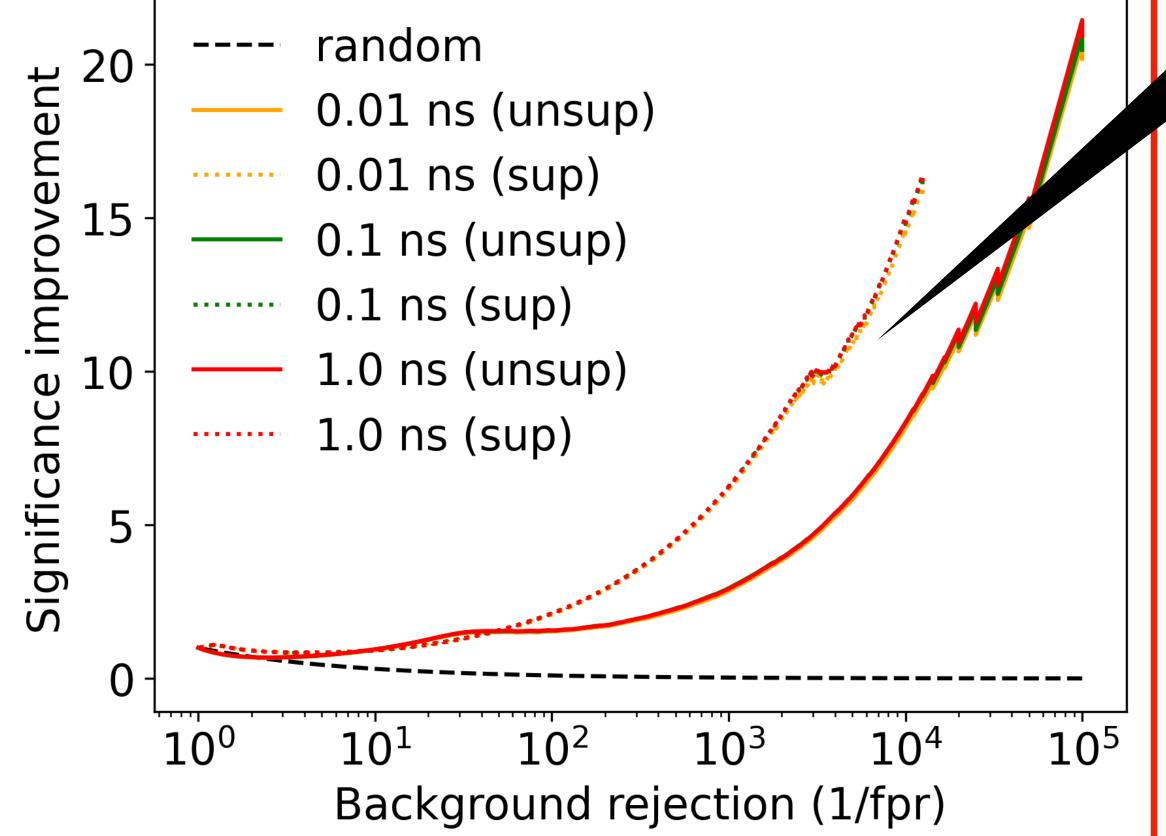




[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Trained on $m_{\chi} = 5$ GeV, lifetime = 1 ns:

 $^{\lambda}$ 5 × 10⁻³ GeV particle



Significance improvement = $\frac{\text{True positive rate}}{\sqrt{\text{False positive rate}}}$

Supervised performance transferable in some cases

