Vector-Pair Production The Amplitude Way

Jared Goldberg, Technion IIT

In collaboration with Hongkai Liu and Yael Shadmi

DPF-PHENO 2024

• The coming years will see precision measurements of electroweak physics at the LHC

- The coming years will see precision measurements of electroweak physics at the LHC
- All-vector and vector-Higgs interactions have yet to be probed in colliders.

Motivation

- The coming years will see precision measurements of electroweak physics at the LHC
- All-vector and vector-Higgs interactions have yet to be probed in colliders.
- How do we parameterize these interactions in a model independent way without knowledge of UV physics?
- What do we learn about EWSB?

Motivation

- The coming years will see precision measurements of electroweak physics at the LHC
- All-vector and vector-Higgs interactions have yet to be probed in colliders.
- How do we parameterize these interactions in a model independent way without knowledge of UV physics?
- What do we learn about EWSB?

 Lagrangian formulated EFTs have high number of operators which are difficult to enumerate due to redundancies (EOMs, IBP, Field redef...)

The Goal:

Compute **contact term** contributions to **VV**

production at dimension-8 in the SMEFT directly

at the **amplitude level**.

Factorizeable

Goals: Amplitudes and EFTs

Contact Terms: 4-pt and higher

Goals: Amplitudes and EFTs

Amplitude Structure Sum of higher dim contact terms $\mathcal{M}(2 \to 2) =$

Combining all possible contact term contributions gives the most general EFT amplitude.

Goals: Amplitudes and EFTs

There is a one-to-one correspondence between the massless EFT amplitudes and SMEFT Lagrangian operators

Shadmi, Weiss '18

The **SMEFT**

The **SMEFT**

Standard Model EFT $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \sum_{d>4} c_i \Lambda^{4-i} \mathcal{O}^i$ $\dim \left[\mathcal{O}\right] = 8$

The Goal:

Compute **contact term** contributions to **2-to-2**

scattering processes with vector-boson final states

at **<u>dimension-8</u>** in the **<u>SMEFT</u>** at the **amplitude level**.

Onshell Methods: Spinor Variables

• The Lorentz Group: $SO(3,1) \cong SU(2) \times SU(2)$

- The Lorentz Group: $SO(3,1) \cong SU(2) \times SU(2)$
- Basic building blocks are 2-component spinors

Spinors!

- The Lorentz Group: $SO(3,1) \cong SU(2) \times SU(2)$
- Basic building blocks are 2-component spinors

Spinors!
$$p^{\mu} \rightarrow p^{\alpha \dot{\beta}} \equiv p^{\mu} \sigma^{\alpha \dot{\beta}}_{\mu} \rightarrow |p|^{\alpha} \langle p|^{\dot{\beta}}$$
 Massless: rank(1)
 $|p^{I}] \langle p_{I}| \equiv |\mathbf{p}] \langle \mathbf{p}|$ Massive: rank(2)

- The Lorentz Group: $SO(3,1) \cong SU(2) \times SU(2)$
- Basic building blocks are 2-component spinors

- The Lorentz Group: $SO(3,1) \cong SU(2) \times SU(2)$
- Basic building blocks are 2-component spinors

Onshell Methods: Amplitude Construction

Arkani-Hamed, Huang, Huang '21

Construction of LE (Massive) SMEFT Amplitudes

Construction of SMEFT Amplitudes: Massless Amplitudes (HE)

Construct set of HE contact terms:

Construction of SMEFT Amplitudes: Massless Amplitudes (HE)

$$\mathcal{V} \xrightarrow{\mathsf{BSM}} \mathcal{V} \xrightarrow{\mathsf{BSM}} \mathcal{V} \xrightarrow{\mathsf{SMEFT:}} \xrightarrow{\mathsf{Construct set of HE contact terms:}} \mathcal{V} \xrightarrow{\mathsf{LE Amplitudes}} \mathcal{V}$$

Construction of SMEFT Amplitudes: Massless Amplitudes (HE)

Balkin, Durieux, Kitahara, Shadmi, Weiss '21

Construction of SMEFT Amplitudes: Onshell Higgsing

Construction of SMEFT Amplitudes: Onshell Higgsing

Results

 Full parameterization of LE (massive) VVVV and ffVV contact term amplitudes generated by dim-8 SMEFT

Results

- Full parameterization of LE (massive) VVVV and ffVV contact term amplitudes generated by dim-8 SMEFT
- Leading order (no dim=6 contributions for these amplitudes)

Liu, Ma, Shadmi, Waterbury '23

 Selection rules on kinematic configurations of observable amplitudes

• SU(2) Symmetry Breaking pattern in the amplitudes, e.g:

• Distinguish the SMEFT from bottom-up amplitude construction (HEFT):

Shadmi, Weiss '18 Durieux, Kitahara, Shadmi, Weiss '19 Liu, Ma, Shadmi, Waterbury '23

LE Amplitudes (HEFT)

 $SU(3) \times U(1)_{EM}$, physical particles $\rightarrow \mathcal{A}_{LE}$

Ε

Summary

- Derived LE dim=8 SMEFT amplitudes using onshell Higgsing:
 - > Model independent parameterization of low energy observables
 - Complete basis for specific processes: no redundancies!
 - Identification of theoretically interesting observables for study at colliders.

Backup Slides

Massless Onshell Amplitude Construction

Massless Onshell Amplitude Construction

Arkani-Hamed, Huang, Huang (2021)

Onshell Methods

In the Lagrangian formalism, operators must be hermitian, e.g.:

$$\mathcal{O}_1 \equiv c_1 \overline{u} \gamma^{\nu} u H^{\dagger} \vec{D^{\mu}} H B_{\mu\nu}$$
$$\boldsymbol{\sim} c_1 = c_1^* \Rightarrow c_1 \in \mathbb{R}$$

Or come with hermitian conjugates, e.g.:

$$\mathcal{O}_2 \equiv c_2 \overline{u} \gamma^{\nu} d\tilde{H}^{\dagger} \vec{D^{\mu}} H B_{\mu\nu} + c_3 \overline{d} \gamma^{\nu} u H^{\dagger} \vec{D^{\mu}} \tilde{H} B_{\mu\nu}$$
$$c_3 = c_2^* \Rightarrow c_2 \in \mathbb{C}$$

Onshell Methods: Discrete Symmetries and Hermiticity

Onshell Methods

This hermiticity is not built into amplitude construction, so must be imposed:

$$c_{1} [23] [3(4-5)1) \longrightarrow c_{2} \langle 23 \rangle \langle 3(4-5)2]$$

$$c_{3} [13] [3(4-5)2) \longrightarrow c_{4} \langle 13 \rangle \langle 3(4-5)2]$$

$$c_{4} \langle 13 \rangle \langle 3(4-5)2]$$

$$c_{4} \langle 13 \rangle \langle 3(4-5)2]$$

$$c_{2} = c_{1}^{*}, c_{4} = c_{3}^{*}$$

$$c_{2} = c_{1}^{*}, c_{4} = c_{3}^{*}$$

$$c_{2} = c_{1}^{*}, c_{4} = c_{3}^{*}$$

amplitudes.

Onshell Methods: Discrete Symmetries and Hermiticity

Onshell Methods

These amplitudes are also related by CP transformations:

$$c_{1} [23] [3(4-5)1\rangle \longrightarrow c_{2} \langle 23 \rangle \langle 3(4-5)2]$$

$$c_{3} [13] [3(4-5)2\rangle \longrightarrow c_{4} \langle 13 \rangle \langle 3(4-5)2]$$
CP

$$\Rightarrow c_2 = c_1, \ c_4 = c_3$$

Demanding CP invariance: 2 complex coefficients \rightarrow two real coefficients