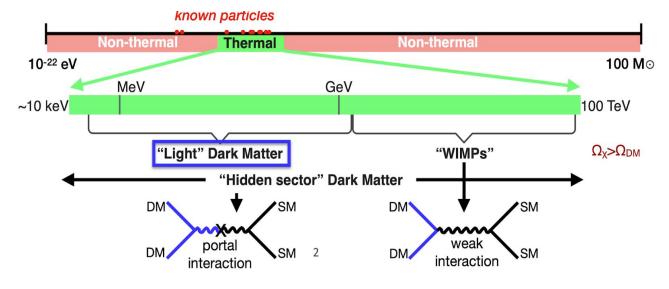
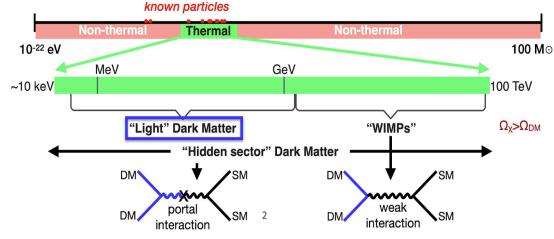
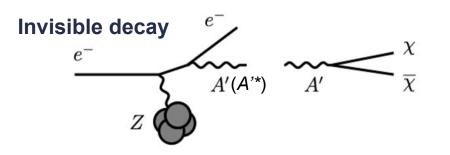
The Light Dark Matter eXperiment (LDMX)

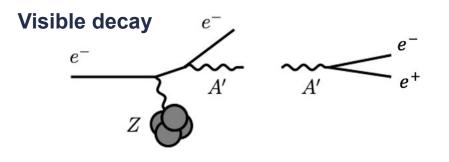

Jessica Pascadlo, University of Virginia On Behalf of the LDMX Collaboration May 13, 2024

Light Dark Matter (LDM)


- Thermal relic DM model works for keV to TeV range
- Two categories for thermal dark matter: WIMPs & LDM
 - Still viable parameter space for WIMPs is dwindling, leading to the rise of "light" dark matter research



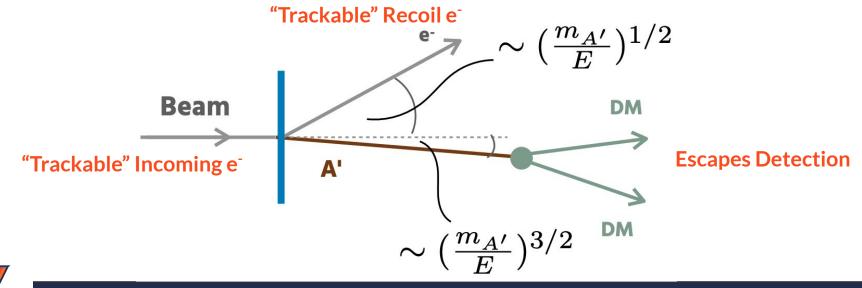
Light Dark Matter (LDM)


- Thermal relic DM model works for keV to TeV range
- $\begin{array}{c} \chi \\ \chi \\ \chi \\ \chi \\ \end{array} \\ \begin{array}{c} A' \\ \alpha_D \\ \epsilon^2 \\ \epsilon^2 \\ \end{array} \\ \begin{array}{c} \gamma \\ \alpha \\ SM \\ \end{array} \\ \begin{array}{c} SM \\ SM \\ SM \\ \end{array} \\ \begin{array}{c} SM \\ SM \\ SM \\ \end{array} \\ \begin{array}{c} SM \\ SM \\ SM \\ \end{array} \\ \begin{array}{c} SM \\ SM \\ SM \\ \end{array} \\ \begin{array}{c} SM \\ SM \\ SM \\ \end{array} \\ \begin{array}{c} SM \\ SM \\ SM \\ SM \\ SM \\ \end{array}$
- Two categories for thermal dark matter: WIMPs & LDM
 - Still viable parameter space for WIMPs is dwindling, leading to the rise of "light" dark matter research
- Important benchmark is vector portal with dark photon (A') kinetically mixing with SM photon
- Accelerator experiments provide generic probe for LDM independent of portal and type of DM particle

Dark Photon Signatures

- $m_{A'} > 2m_{\chi}$ or off-shell production
 - Decays into DM particles that don't interact with detector
- For LDMX, characterized by some missing energy/momentum in the detector as a whole

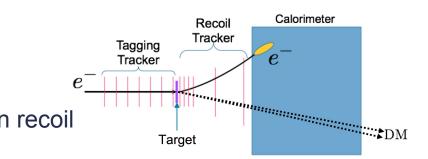
- $2m_e < m_{A'} < 2m_{\chi}$
 - Decays into SM particles
 - Long-lived
- For LDMX, characterized by a displaced, sudden appearance of energy deposited in some downstream part of the detector



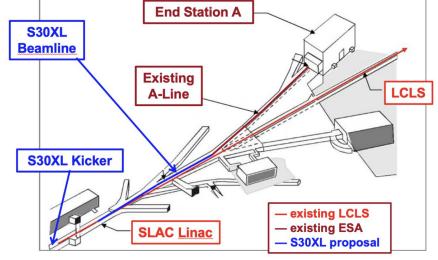
Dark Photon Kinematics at a Fixed Target Experiment

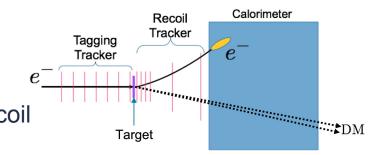
Fixed target signal characteristics:

 \rightarrow Dark bremsstrahlung A' production (invisible decay)


 \rightarrow A's take most of the beam energy; only visible final state particle is a soft recoil electron

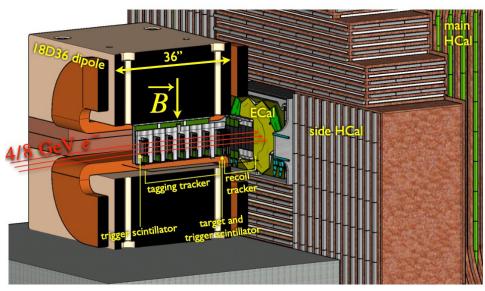
LDMX Concept

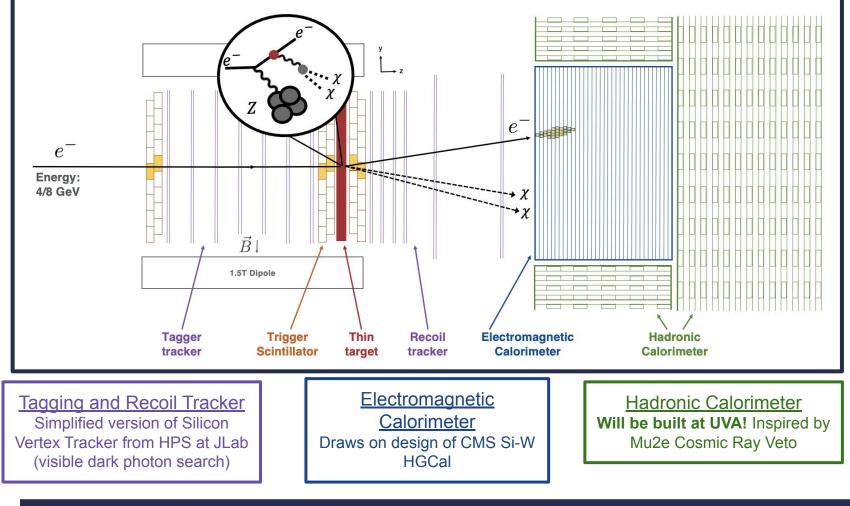

- Look for missing momentum (and energy) in recoil electron
 - Use detectors to identify the missing momentum & energy \rightarrow DM production!
 - Particle ID
 - Transverse momentum of recoil e⁻ used as discriminator/identifier



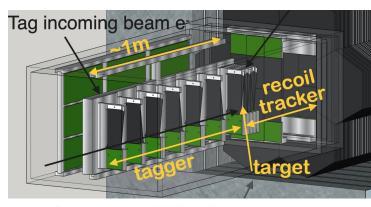
LDMX Concept

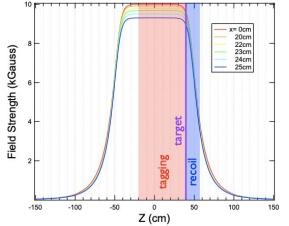
- Look for missing momentum (and energy) in recoil electron
 - Use detectors to identify the missing momentum & energy \rightarrow DM production! Ο
 - Particle ID \bigcirc
 - Transverse momentum of recoil e⁻ used as discriminator/identifier 0
- e⁻ beam provided by SLAC
 - Planning on 4 GeV and 8 GeV runs Ο
- Must be able to tag and reconstruct every electron
 - Do this for up to 1e16 electrons \bigcirc
 - Use low current, high repetition rate of 37 MHz, Ο
 - $\mu = 1$ to a few




LDMX Design

Basically dumping the beam onto our detector!

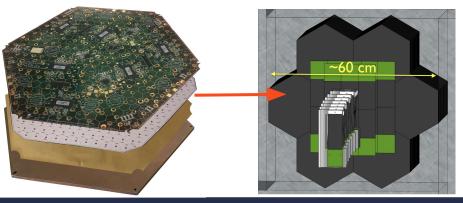

- \rightarrow Need hermetic, radiation tolerant detector designed for high beam rates
- **Tagging tracker**: low acceptance and high resolution at beam energy
- **Recoil tracker**: large acceptance and high resolution at low particle momenta
- **Trigger Scintillator**: scintillator bars provide fast, accurate count of incoming electrons
- Electromagnetic calorimeter: fast, good energy resolution, and high granularity
- Hadronic calorimeter: high veto efficiency
 of neutral hadrons



Trackers and Trigger Scintillator

- Tagging tracker
 - Measures incoming beam electron

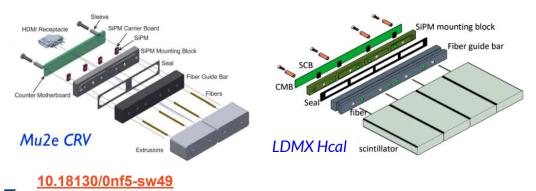
Recoil tracker

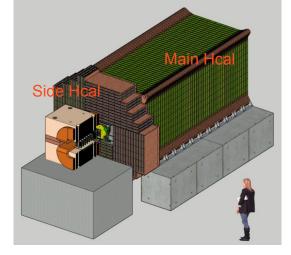

- Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - Used as an input to the missing energy trigger

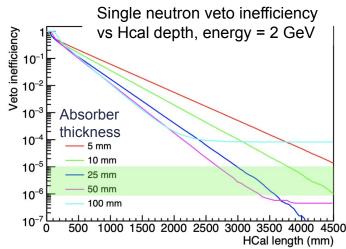
Scintillator pads around target

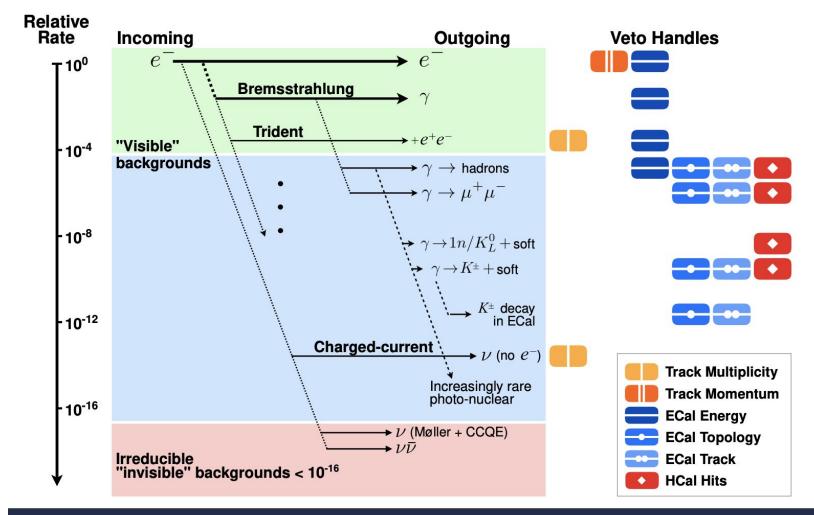
Electromagnetic Calorimeter (Ecal)

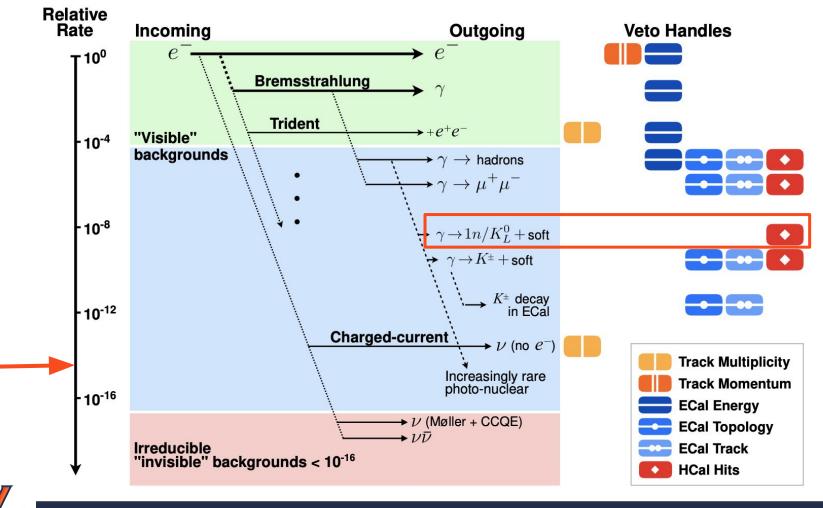
- Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - ~ 40 X_0 depth (34 Si layers) for extraordinary shower containment
- Provides fast missing energy trigger (E < 1.5 GeV for 4 GeV beam)
- <u>High granularity</u> transverse and longitudinal shower shapes can be exploited to reject backgrounds
- Capable of MIP tracking to further improve background rejection

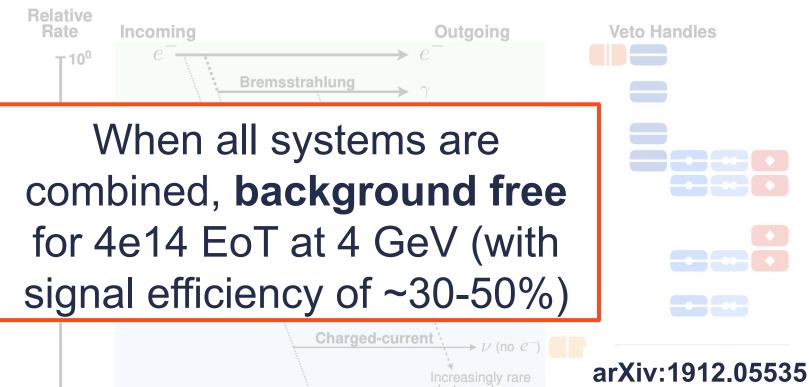

Jessica Pascadlo | DPF-PHENO 2024

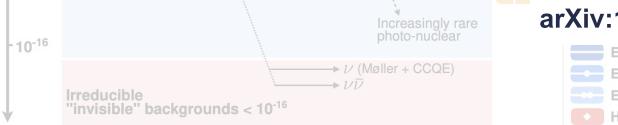


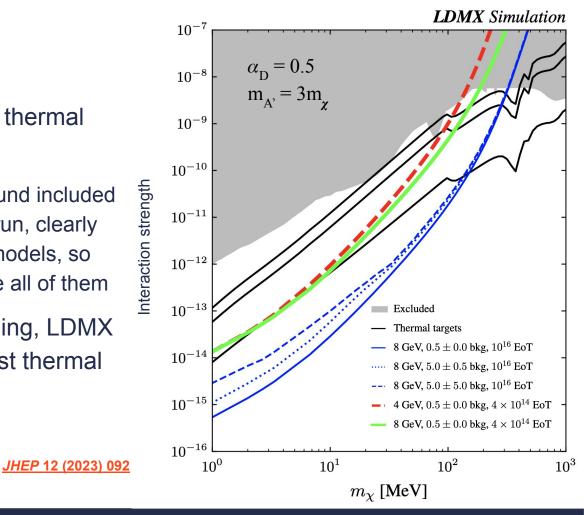

0


Hadronic Calorimeter (Hcal)

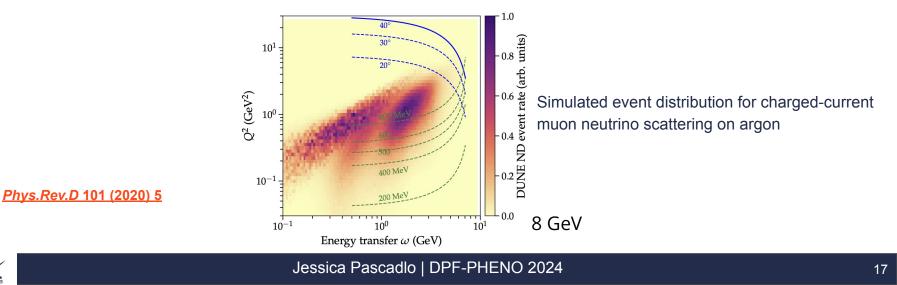

- Segmented scintillator/steel sampling calorimeter
 - $_{\circ}$ 96 layers of 20 (25) mm of polystyrene (Fe) → ~17λ
- Main Hcal detects neutral hadrons (mostly K_L, n) produced in photonuclear reactions, and MIPs
- Side Hcal rejects wide angle brem and $\gamma \rightarrow \mu + \mu$ -
- Extruded scintillator bars with inserted wavelength-shifting fibers, read out with SiPMs

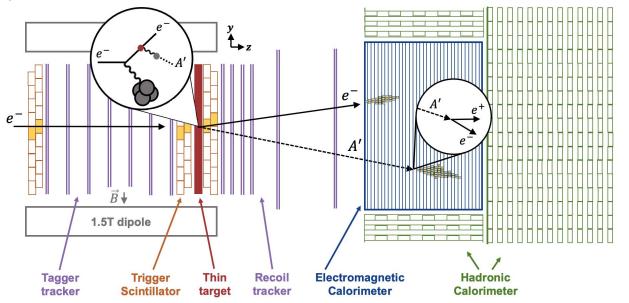






Projected Sensitivity


- LDMX is able to reach ALL thermal targets!
 - Even with some background included for the 8 GeV/1e16 EoT run, clearly pass all the benchmark models, so we will be able to exclude all of them
- Within a few weeks of running, LDMX could begin to reach the first thermal targets


Additional Physics Program: Neutrino Cross-Sections

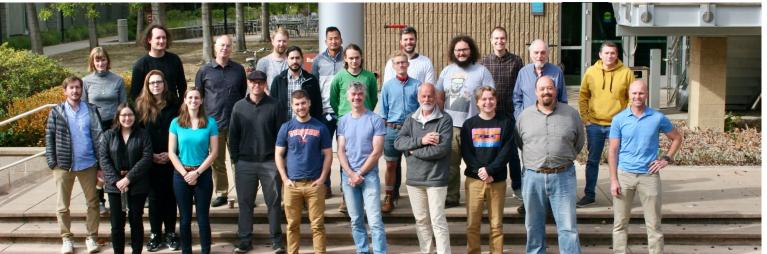
- LDMX offers a broader physics program beyond a missing momentum search for LDM
- Small angle acceptance (nearly hermetic) and fully reconstructing final/initial states allows for several unique measurements
 - Electro-nuclear scattering measurements of interest to neutrino experiments such as DUNE

Additional Physics Program: Visible Signatures

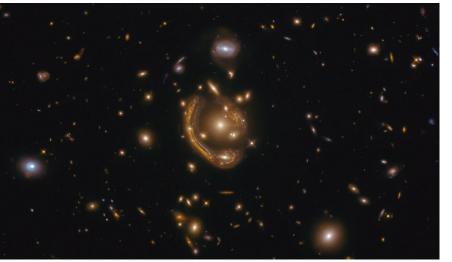
- LDMX offers a broader physics program beyond a missing momentum search for LDM
- Many models could be tested (minimal dark photon, ALPs, SIMPS, etc.)

Phys.Rev.D 99 (2019) 7

Conclusions

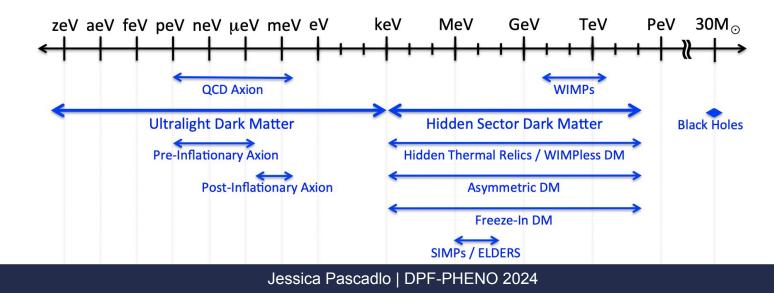

- Thermal DM is a simple and compelling scenario, and MeV-GeV scale is a logical place to look extension of WIMPs!
- LDMX will be able to provide world-leading sensitivity to sub-GeV DM and is able to test many LDM scenarios along the way
 - Impressive physics discovery potential and guaranteed deliverables
- The experiment is ready to move forward with the construction phase
- LDMX could be taking data in 2-3 years after establishing the funding profile and **make a major discovery shortly thereafter**

UNIVERSITET



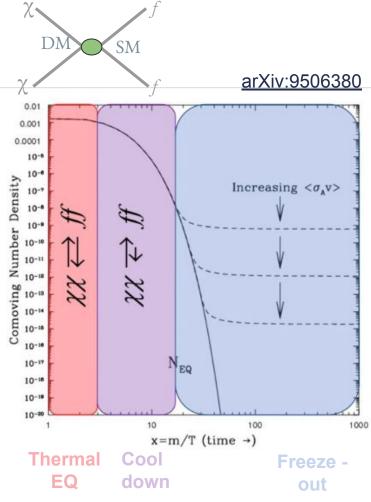
Evidence for Dark Matter

- Strong case for the existence of dark matter (DM)
 - Galaxy rotation curves
 - Gravitational lensing
 - Cosmic Microwave Background anisotropy
 - Cluster collisions

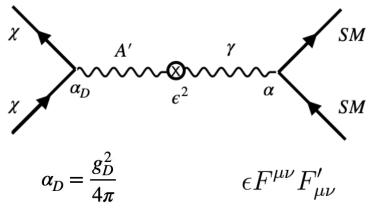


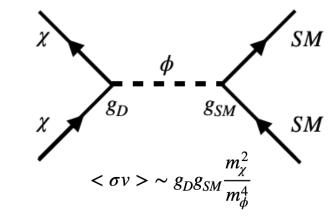
- No detection (yet!) the origin and nature of DM is a key puzzle for particle physics
 - Standard model does not include dark matter
 - How do we narrow down a search region to determine what DM is?

Trying to Understand Dark Matter


- What <u>do</u> we know?
 - Interacts gravitationally
 - Cosmological abundance
 - Limited interactions with known (SM) matter
- We don't know the mass of the DM

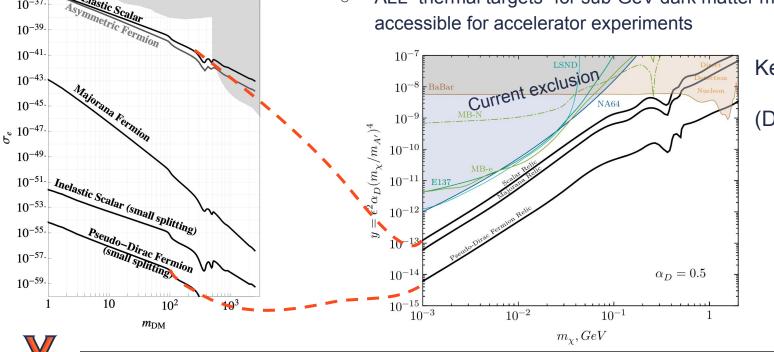
Thermal Dark Matter


- Assume we are dealing with *particle-like DM*
- DM and SM particles in thermal equilibrium in the very early universe
- As universe cools and expands, DM pairs are no longer in equilibrium, resulting in decreasing amount of interactions
- Universe expands and cools enough such that DM is too dilute to interact → freeze-out
- The current relic density Ω_X is related to the annihilation cross section $\langle \sigma v \rangle$


$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle} \longrightarrow \langle \sigma v \rangle = 3 \times 10^{-26} \ \frac{\mathrm{cm}^3}{\mathrm{s}}$$

Light Thermal Dark Matter - Hidden Sector

- DM could belong to some "hidden sector" that is secluded from the SM
- Sub-GeV DM requires an additional non-SM interaction to maintain the correct relic abundance
 - Mediated by new massive gauge boson



- Additional spin-one gauge boson (dark photon or A')
 - neutral under SM
 - Hidden, broken symmetry **U(1)**
- Kinetically mixing with SM U(1), with factor ε
- Visible and invisible final states

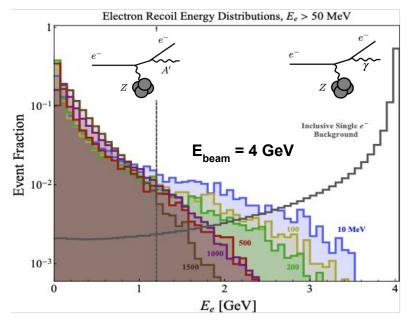
Advantage of DM Production at Accelerators

- LDM production at accelerators is fairly independent of the DM model, especially when compared to direct detection
 - ALL "thermal targets" for sub-GeV dark matter models are much more Ο accessible for accelerator experiments

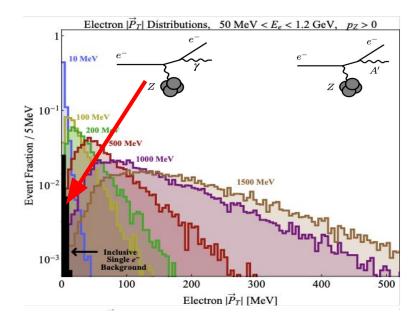
Key difference is the non-relativistic (DM-e) vs relativistic (accel.) DM scattering

Thermal and Asymmetric Targets for DM-e Scattering

Elastic Scalar


Current exclusion

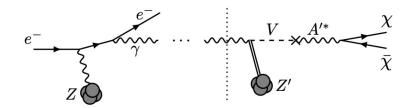
 10^{-35}

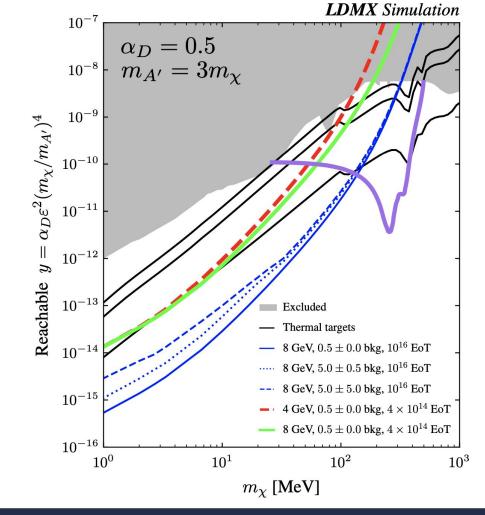

 10^{-37}

Jessica Pascadlo | DPF-PHENO 2024

Dark Photon Kinematics at a Fixed Target Experiment

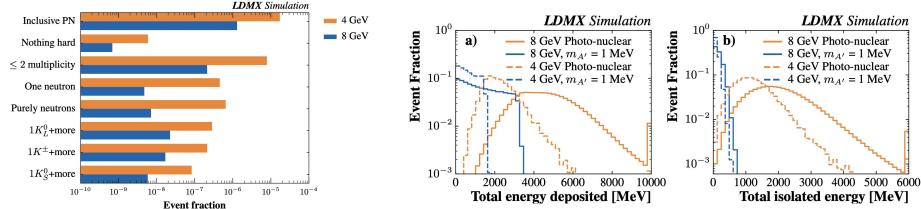
- A'→χχ carry away most of the beam energy and escape undetected
 - Opposite behavior for the bremsstrahlung emission

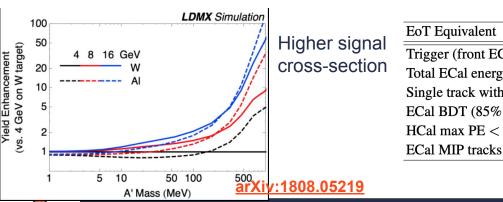



- Recoil electron p_T spectrum depends strongly on m_A, for signal
 - Signal identification or extra handle for background rejection

When all systems are background free for 4 signal efficiency of ~3	sstrahlun	g →	outgoing e^-	Veto Handles					
10-3 10-4 10-5		*	ent		$+e^+e^-$ $\rightarrow \gamma \rightarrow \text{hadrons}$ $\rightarrow \gamma \rightarrow \mu^+\mu^-$				
	Photo-i Target-area		Muon con Target-area		γ γ μα μα				
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}		$\gamma \to 1n/K_L^0 + \text{soft}$				
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	0 1 10	$\gamma \rightarrow K^{\pm} + \text{soft}$				
Trigger, ECal total energy < 1.5 GeV		2.63×10^{8}	1.6×10^{7}	1.6×10^{8}	K^{\pm} decay	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Single track with $p < 1.2 \text{ GeV}$ ECal BDT (> 0.99)	$\begin{array}{c c} 2 \times 10^7 \\ 9.4 \times 10^5 \end{array}$	2.34×10^{8} 1.32×10^{5}	3.1×10^4 < 1	1.5×10^{8} < 1	in ECal				
HCal max PE < 5	$ \frac{9.4 \times 10}{< 1} $	1.52×10 10	< 1	<1					
ECal MIP tracks = 0	< 1	< 1	< 1	< 1	🔪 arXiv:'	1912.05535 ack			
10-15 10-16	"visible" backgrou			'	increasingly rare photo-nuclear	Extra Tracks			
····	"invisible"	' backgrou	unds $\ll 10^{\circ}$	-16 ν νi	(M øller + CCQE)	ECal Feature HCal Hits			
Jessica Pascadlo DPF-PHENO 2024 2									

Gain additional sensitivity from invisible meson decay channel





Advantages of 8 GeV Beam

Overall reduction of PN events that pass the trigger and higher multiplicity

	Photo-1	nuclear	Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT Equivalent	$2.00 imes 10^{14}$	2.00×10^{14}	2.00×10^{14}	$2.00 imes 10^{14}$
Trigger (front ECal energy < 3160 MeV)	$7.57 imes 10^7$	4.43×10^8	$2.37 imes 10^7$	8.12×10^7
Total ECal energy < 3160 MeV	$2.73 imes10^7$	7.27×10^7	$1.76 imes 10^7$	$6.06 imes 10^7$
Single track with $p < 2400$ MeV/c	$3.03 imes10^6$	$6.64 imes 10^7$	$5.32 imes 10^4$	$5.69 imes 10^7$
ECal BDT (85% eff. $m_{A'} = 1 \text{ MeV}$)	$1.50 imes 10^5$	1.04×10^5	< 1	< 1
HCal max $PE < 8$	< 1	2.02	< 1	< 1
ECal MIP tracks = 0	< 1	< 1	< 1	< 1