

Baryon asymmetry from dark matter decay in the vicinity of a phase transition

Indrajit Saha Indian Institute of Technology Guwahati

In collaboration with Debasish Borah (IITG), Arnab Dasgupta (University of Pittsburgh) and Matthew Knauss (William & Mary)

Based on Phys.Rev.D 108 (2023) 9, L091701 arXiv: 2306.05459

Outline:

- Motivation
- Leptogenesis
- Dark matter
- First order Phase Transition (FOPT)
- Scotogenic model
- Stochastic Gravitational Waves (GW)
- Conclusion

Motivation

• The Observed baryon asymmetry of the Universe as baryon to photo ratio is

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \simeq 6.2 \times 10^{-10}$$

Planck 2018 data, arXiv:1807.06209

Baryogenesis

Sakharov's Conditions

Sakharov 1967

- Baryon number violation
- C & CP violation
- Departure from thermal equilibrium

Standard Model unable to satisfy above conditions in required amount.

Baryogenesis via Leptogenesis

electroweak sphalerons

 $\eta_B =$

- * Right handed neutrino decays out of equilibrium (Fukugita & Yanagida 1986) $Y_{ij}\overline{L}_i\widetilde{H}N_j + \frac{1}{2}M_{ij}N_iN_j$
- * CP violation due to phases in Yukawa couplings Y, leads to a lepton asymmetry $\epsilon_{\alpha\alpha} \equiv \frac{\Gamma(N_1 \to \phi \ell_{\alpha}) - \Gamma(N_1 \to \phi \bar{\ell}_{\alpha})}{\Gamma(N_1 \to \phi \ell) + \Gamma(N_1 \to \phi \bar{\ell})}$

The frozen out lepton asymmetry at is converted into baryon asymmetry by

$$= \frac{a_{\mathrm{sph}}}{f} \epsilon_1 \kappa$$

 $\frac{dn_X}{dt} = -3Hn_X - \langle \sigma_{\rm ann} v \rangle (n_X^2 - n_{\rm eq}^2)$

Baryon-DM coincidence: $\Omega_{DM} \approx 5\Omega_{B}$

They can have a common origin!

First order Phase transition:

The rate of tunneling per unit volume:

$$\Gamma(T) = \mathcal{A}(T)e^{-S_3(T)/T},$$

$$S_3 = \int_0^\infty dr 4\pi r^2 \left[\frac{1}{2}\left(\frac{d\phi}{dr}\right)^2 + V_{\text{tot}}(\phi, T)\right]$$

$$\Gamma(T_n) = \mathbf{H}^4(T_n).$$

Linde, Phys.Lett.B 100 (1981) Vacuum energy released

Scotogenic Model

Leptonic Yukawa interaction:

Scalar Potential:

$$V_{\text{tree}} = \mu_{\Phi}^2 |\Phi|^2 + \lambda_4 |\eta^{\dagger} \Phi|^2 + \lambda_4 |\eta^{\dagger} \Phi|^2$$

 $V_{\text{tot}} = V_{\text{tree}} + V_{\text{CW}} + V_{\text{th}},$

$$V_{\rm CW} = \sum_{i} (-)^{n_f} \frac{n_i}{64\pi^2} m_i^4(\phi) \left(\log\left(\frac{m_i^2(\phi)}{\mu^2}\right) - \frac{3}{2} \right),$$
$$V_{\rm th} = \sum_{i} \left(\frac{n_{\rm B_i}}{2\pi^2} T^4 J_B \left[\frac{m_{\rm B_i}}{T}\right] - \frac{n_{\rm F_i}}{2\pi^2} T^4 J_F \left[\frac{m_{\rm F_i}}{T}\right] \right),$$

Coleman & Weinberg, PRD 7 (1973), Dolan & Jackiw, PRD 9 (1974)

$$-\mathcal{L} \supset \frac{1}{2} M_{ij} \overline{N_i^c} N_j + Y_{\alpha i} \overline{L_\alpha} \tilde{\eta} N_i + \text{h.c.}$$

 $\mu_{\eta}^{2}|\eta|^{2} + \lambda_{1}|\Phi|^{4} + \lambda_{2}|\eta|^{4} + \lambda_{3}|\Phi|^{2}|\eta|^{2}$ $+ \lambda_5 [(\eta^{\dagger} \Phi)^2 + \text{h.c.}]$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \phi + v \end{pmatrix}, \eta = \begin{pmatrix} \eta^{\pm}\\ \frac{(H+iA)}{\sqrt{2}} \end{pmatrix}$$

BSM fields: 3 singlet right handed neutrinos, one extra scalar doublet

Finite temperature effect on masses:

Scalar masses

$$m_i^2(\phi, T) = m_i^2(\phi) + \Pi_S(T)$$

Lepton masses
 $M_L(T) = \sqrt{m_L^2 + \frac{1}{2}\Pi_{gauge}^2(T)},$
 $\Pi_{gauge}^2(T) = \left(\frac{1}{16}g'^2 + \frac{3}{16}g^2\right)T^2.$

DM decay if

 $M_N > M_L + \eta$

2306.05459

Boltzmann equation:

$$\frac{dY_{N}}{dz} = \frac{g_{\eta}\langle\Gamma_{\eta}\rangle}{z\tilde{\mathcal{H}}} \left[Y_{\eta} - \frac{Y_{\eta}^{eq}Y_{N}}{Y_{N}^{eq}}\right] - \frac{g_{\eta}\langle\Gamma_{N_{1}}\rangle}{z\tilde{\mathcal{H}}} \left[Y_{N} - \frac{Y_{N}^{eq}Y_{\eta}}{Y_{\eta}^{eq}}\right],$$

$$\frac{dY_{\eta}}{dz} = -\frac{g_{\eta}\langle\sigma_{\eta\eta}v_{rel}\rangle s}{z\tilde{\mathcal{H}}} \left[Y_{\eta}^{2} - Y_{\eta}^{eq}^{2}\right] - \frac{g_{\eta}\langle\Gamma_{\eta}\rangle}{z\tilde{\mathcal{H}}} \left[Y_{\eta} - \frac{Y_{\eta}^{eq}Y_{N}}{Y_{N}^{eq}}\right] + \frac{g_{\eta}\langle\Gamma_{N_{1}}\rangle}{z\tilde{\mathcal{H}}} \left[Y_{N} - \frac{Y_{N}^{eq}Y_{\eta}}{Y_{\eta}^{eq}}\right],$$

$$\frac{dY_{B-L}}{dz} = -\epsilon_{1}\frac{g_{\eta}\langle\Gamma_{N_{1}}\rangle}{z\tilde{\mathcal{H}}} \left[Y_{N} - \frac{Y_{N}^{eq}Y_{\eta}}{Y_{\eta}^{eq}}\right] - \epsilon_{\eta}\frac{g_{\eta}\langle\Gamma_{\eta}\rangle}{z\tilde{\mathcal{H}}} \left[Y_{\eta} - \frac{Y_{\eta}^{eq}Y_{N}}{Y_{N}^{eq}}\right] - (W_{1} + \Delta W) Y_{B-L}.$$
Lepton asymmetry:

$$\epsilon_{i} = \left[(M_{i}^{2} + M_{L}^{2} - m_{\eta}^{2})\lambda^{1/2} (M_{i}^{2}, M_{L}^{2}, m_{\eta}^{2}) \Theta \left(M_{i}^{2} - (m_{\eta} + M_{L})^{2}\right)\right] \frac{1}{(Y^{\dagger}Y)_{ii}} \sum_{j\neq i} \frac{\operatorname{Im}[((Y^{\dagger}Y)_{ij})^{2}]}{16\pi M_{i}^{3}} \frac{M_{j}\Delta_{ij}}{\Delta_{ij}^{2} + (M_{j}\Gamma_{ij})} \left[\frac{M_{j}\Delta_{ij}}{M_{j}^{2}}\right] + \frac{M_{j}^{2}}{2} \left[\frac{M_{j}\Delta_{ij}}{M_{j}^{2}}\right] \frac{M_{j}\Delta_{ij}}{M_{j}^{2}}$$

Boltzmann equation:

$$\frac{dY_{N}}{dz} = \frac{g_{\eta} \langle \Gamma_{\eta} \rangle}{z \tilde{\mathcal{H}}} \left[Y_{\eta} - \frac{Y_{\eta}^{eq} Y_{N}}{Y_{N}^{eq}} \right] - \frac{g_{\eta} \langle \Gamma_{N_{1}} \rangle}{z \tilde{\mathcal{H}}} \left[Y_{N} - \frac{Y_{N}^{eq} Y_{\eta}}{Y_{\eta}^{eq}} \right],$$

$$\frac{dY_{\eta}}{dz} = -\frac{g_{\eta} \langle \sigma_{\eta\eta} v_{rel} \rangle s}{z \tilde{\mathcal{H}}} \left[Y_{\eta}^{2} - Y_{\eta}^{eq^{2}} \right] - \frac{g_{\eta} \langle \Gamma_{\eta} \rangle}{z \tilde{\mathcal{H}}} \left[Y_{\eta} - \frac{Y_{\eta}^{eq} Y_{N}}{Y_{N}^{eq}} \right] + \frac{g_{\eta} \langle \Gamma_{N_{1}} \rangle}{z \tilde{\mathcal{H}}} \left[Y_{N} - \frac{Y_{N}^{eq} Y_{\eta}}{Y_{\eta}^{eq}} \right] \\
\frac{dY_{B-L}}{dz} = -\epsilon_{1} \frac{g_{\eta} \langle \Gamma_{N_{1}} \rangle}{z \tilde{\mathcal{H}}} \left[Y_{N} - \frac{Y_{N}^{eq} Y_{\eta}}{Y_{\eta}^{eq}} \right] - \epsilon_{\eta} \frac{g_{\eta} \langle \Gamma_{\eta} \rangle}{z \tilde{\mathcal{H}}} \left[Y_{\eta} - \frac{Y_{\eta}^{eq} Y_{N}}{Y_{N}^{eq}} \right] - (W_{1} + \Delta W) Y_{B-L}.$$
Lepton asymmetry:

$$\epsilon_{i} = \left[\left(M_{i}^{2} + M_{L}^{2} - m_{\eta}^{2} \right) \lambda^{1/2} \left(M_{i}^{2}, M_{L}^{2}, m_{\eta}^{2} \right) \Theta \left(M_{i}^{2} - (m_{\eta} + M_{L})^{2} \right) \right] \frac{1}{(Y^{\dagger}Y)_{ii}} \sum_{j \neq i} \frac{\operatorname{Im}[((Y^{\dagger}Y)_{ij})^{2}]}{16\pi M_{i}^{3}} \frac{M_{j} \Delta_{ij}}{\Delta_{ij}^{2} + (M_{j} \Gamma_{ij})^{2}} \right]$$

^{2306.05459}

Stochastic Gravitational Waves:

 $\Omega_{\rm GW}^{\rm PT}(f) = \Omega_{\phi}(f) + \Omega_{\rm sw}(f) + \Omega_{\rm turb}(f),$

$$h^{2}\Omega(f) = \mathcal{R}\Delta(v_{w}) \left(\frac{\kappa\alpha_{*}}{1+\alpha_{*}}\right)^{p} \left(\frac{\mathbf{H}_{*}}{\beta}\right)^{q} \mathcal{S}(f/f_{\text{peak}})$$

Caprini et al. JCAP 04 (2016)

Cutting et al. 97, 123513 (2018)

Detectional prospects of Gravitational Waves:

Conclusion:

- We have addressed baryon-DM coincidence $\Omega_{DM} \approx 5\Omega_{B}$, from DM decay.
- sensitivity.
- The doublet scalar can have collider signature which can be probe.

• We have realized first order Electroweak phase transition with GW within LISA

• The two step first order phase transition can have other detection prospects.

Backup:

	T_c (GeV)	$v_c \; (\text{GeV})$	$T_n(\text{GeV})$	M_1 (GeV)	μ_{η} (GeV)	$M_{\eta^{\pm}} \sim M_A(\text{GeV})$	M_H (GeV)	$lpha_*$	eta/\mathcal{H}	v_J	$T_{\rm RH}$ (0
BP1	60.05	217.22	29.27	859.50	760.25	951.51	931.26	1.29	20.21	0.94	30.3
BP2	73.55	187.62	68.54	866.70	787.07	958.89	944.72	0.04	2862.35	0.71	68.5
BP3	71.30	199.28	64.33	676.64	579.36	774.96	743.73	0.06	1829.84	0.74	64.3
BP4	63.35	216.65	38.49	493.74	368.04	608.38	548.60	0.45	159.33	0.88	38.4

$$\begin{split} m_{\eta^{\pm}}^{2}(\phi) &= \mu_{\eta}^{2} + \frac{\lambda_{3}}{2}\phi^{2} \ (n_{\eta^{\pm}} = 2, C_{\eta^{\pm}} = \frac{3}{2}), \ m_{H}^{2}(\phi) = \mu_{\eta}^{2} + \frac{\lambda_{3} + \lambda_{4} + 2\lambda_{5}}{2}\phi^{2} \ (n_{H} = 1, C_{H} = m_{A}^{2}(\phi) = \mu_{\eta}^{2} + \frac{\lambda_{3} + \lambda_{4} - 2\lambda_{5}}{2}\phi^{2} \ (n_{A} = 1, C_{A} = \frac{3}{2}), \ m_{W}^{2}(\phi) = \frac{g_{2}^{2}}{4}\phi^{2} \ (n_{W} = 6, C_{W} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{Z} = 3, C_{Z} = \frac{5}{6}), \ m_{t}^{2}(\phi) = \frac{y_{t}^{2}}{2}\phi^{2} \ (n_{t} = 12, C_{t} = \frac{3}{2}), \ m_{b}^{2}(\phi) = \frac{y_{b}^{2}}{2}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = m_{Z}^{2}(\phi) = \frac{g_{1}^{2} + g_{2}^{2}}{4}\phi^{2} \ (n_{b} = 12, C_{b} = m_{Z}^{2}(\phi) = m_{Z}^{2}($$

$$Y_{\alpha i} = \left(U D_{\nu}^{1/2} R^{\dagger} \Lambda^{1/2} \right)_{\alpha i}$$

