

Artwork by Sandbox Studio, Chicago with Ana Kova

''DPF-PHENO 2024''

May 13-17, 2024

Zahra Tabrizi

Neutrino Theory Network fellow

Northwestern University

Precision Measurements at Oscillation Experiments

o **Tons of data;**

- o **Identify neutrino flavor;**
- o **More sensitive to some HE operators;**

Goal:

A systematic analysis of NP using neutrino experiments; Connecting the results to other precision experiments;

EFT at neutrino experiments e_{α}

We have proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, *ZT***, JHEP (2020)**

EFT at neutrino experiments e_{α}

We have proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, *ZT***, JHEP (2020)**

Observable: rate of detected events

∼(flux)×(det. cross section)×(oscillation)

$$
R^{\rm SM}_{\alpha\beta} = \Phi^{\rm SM}_\alpha \sigma^{\rm SM}_\beta \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_\nu}} U^*_{\alpha k} U_{\alpha l} U_{\beta k} U^*_{\beta l}
$$

EFT at neutrino experiments e_{α}

We have proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Observable: rate of detected events

∼(flux)×(det. cross section)×(oscillation)

Corrections to fluxes/cross sections

CC EFT NC EFT

Falkowski, González-Alonso, *ZT***, JHEP (2020)**

depend on the kinematic and spin variables

$$
\mathcal{M}_{\alpha k}^{P} = U_{\alpha k}^{*} A_{L}^{P} + \sum_{X} \left[\epsilon_{X} U \right]_{\alpha k}^{*} A_{X}^{P}
$$

$$
\mathcal{M}_{\beta k}^{D} = U_{\beta k} A_{L}^{D} + \sum_{X} \left[\epsilon_{X} U \right]_{\beta k} A_{X}^{D}
$$

$$
\sigma^{Total} = \sigma^{SM} + \varepsilon_X \sigma^{Int} + \varepsilon_X^2 \sigma^{NP} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})
$$

$$
\boldsymbol{\phi}^{Total} = \boldsymbol{\phi}^{SM} + \varepsilon_X \boldsymbol{\phi}^{Int} + \varepsilon_X^2 \boldsymbol{\phi}^{NP} \sim \boldsymbol{\phi}^{SM} (1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})
$$

Long Baseline Accelerator Experiments

CCQE Hadronic Matrix Elements

SM-Interactions:

Kopp, Rocco, ZT, arXiv: 2401.07902

Vector Current: **Form Factors well understood (constrained by eN scattering)** Axial Current:

5/14/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 7

Kopp, Rocco, ZT, arXiv: 2401.07902

- o z-expansion fit to LQCD and D2 data;
- o Nuclear effects;
- o Comparison with nucleon scattering

Large uncertainties from form factors!

- o We add new scalar, pseudo-scalar and tensor currents;
- o Interference with the SM;
- o New Cross Section Contributions;

Kopp, Rocco, ZT, arXiv: 2401.07902

o We add new scalar, pseudo-scalar and tensor currents;

 \triangleright RQCD Collaboration (hatched band)

Kopp, Rocco, ZT, arXiv: 2401.07902

o We add new scalar, pseudo-scalar and tensor currents;

How about flux corrections?

Falkowski, González-Alonso, Kopp, Soreq, *ZT***, JHEP (2021)**

Due to the pseudoscalar nature of the pion, it is sensitive only to axial $(\epsilon_L - \epsilon_R)$ and pseudo-scalar (ϵ_P) interactions.

$$
p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = \frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},
$$

\n
$$
p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}(m_u + m_d)^2} \sim 27
$$

\n
$$
\sim 700!
$$

$$
\pi^{-}\left\{\begin{matrix}d&\\ \overline{u}&\overline{v}_{\mu}\end{matrix}\right\}
$$

$$
\pi^{-}(d\overline{u})\rightarrow\mu^{-}+\overline{v}_{\mu}
$$

• Larger $p_{XY} \implies$ smaller ϵ !

$$
\left|\boldsymbol{\phi}^{Total} \sim \boldsymbol{\phi}^{SM} (1+\varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})\right|
$$

Huge overall flux normalization for pion decay!

$$
\langle 0 | \bar{d}\gamma^{\mu} \gamma_5 u | \pi^+(p_{\pi}) \rangle = i p_{\pi}^{\mu} f_{\pi}
$$

$$
\langle 0 | \bar{d}\gamma_5 u | \pi^+(p_{\pi}) \rangle = -i \frac{m_{\pi}^2}{m_u + m_d} f_{\pi}
$$

5/14/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 13

Example: Event Rates at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- Results are statistics dominated: $v_e{\sim}1000$, $v_\mu{\sim}5000$, $v_\tau{\sim}10$
- Optimistic systematic uncertainties: 5% on v_e , 10% on v_μ , 15% on v_τ
- Conservative systematic uncertainties: 30% on v_e , 40% on v_μ , 50% on v_τ

EFT at neutrino experiments

o Observed rate at the experiment: $R_{Obs} = 10^4 \nu_{\mu}$ $\sqrt{R_{obs}} = 10^2 \nu_\alpha \equiv \Delta R$ Uncertainty: \circ $R_{Th} = R_{SM}(1 + C \epsilon^2) = R_{SM} + \Delta R$ From theory: \circ $C = 10^3$
 $\epsilon < \frac{10^2}{10^3 \times 10^4} \approx 3 \times 10^{-3}$ $C \epsilon^2 = \frac{\Delta R}{R_{SM}}$ Limit on ϵ : \circ $\frac{V[246 \text{ GeV}]}{\sqrt{\epsilon}}$ = 4.5 TeV **New Physics Limit:** \circ σ_{NP} or $\frac{\phi_{NP}}{4}$ ∝ σ_{SM} ϕ_{SM}

I'M now GOING TO OPEN THE FLOOR TO QUESTIONS.

Zahra Tabrizi, NTN fellow, Northwestern U.CARTOONCOLLECTIONS.COM

Back up Slides

• Coherent CC and NC forward scattering of neutrinos

• New 4-fermion interactions

- Observable effects at neutrino production/propagation/detection?
- Using "EFT" formalism to "systematically" explore NP beyond the neutrino masses and mixing

EFT ladder

SMEFT: minimal EFT above the weak scale

5/14/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 22

EFT ladder WEFT: Effective Lagrangian defined at a low scale μ ~ 2 GeV

At the scale m_Z WEFT parameters ϵ_X map to dim-6 operators in SMEFT

$$
\begin{aligned}\n[\epsilon_L]_{\alpha\beta} &\approx \frac{v^2}{\Lambda^2 V_{ud}} \left(V_{ud} [c_{Hl}^{(3)}]_{\alpha\beta} + V_{jd} [c_{Hq}^{(3)}]_{1j} \delta_{\alpha\beta} - V_{jd} [c_{lq}^{(3)}]_{\alpha\beta 1j} \right. \\
[\epsilon_R]_{\alpha\beta} &\approx \frac{v^2}{2\Lambda^2 V_{ud}} [c_{Hud}]_{11} \delta_{\alpha\beta} \\
[\epsilon_S]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alpha j1}^* + [c_{ledq}]_{\beta\alpha 11}^* \right) \\
[\epsilon_P]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alpha j1}^* - [c_{ledq}]_{\beta\alpha 11}^* \right) \\
[\hat{\epsilon}_T]_{\alpha\beta} &\approx -\frac{2v^2}{\Lambda^2 V_{ud}} V_{jd} [c_{lequ}^{(3)}]_{\beta\alpha j1}^* \n\end{aligned}
$$

Falkowski, González-Alonso, *ZT***, JHEP (2019)**

- All $\epsilon_{\rm X}$ arise at O(Λ^{-2}) in the SMEFT, thus they are equally important.
- No off-diagonal right handed interactions in SMEFT.

Hadronic Matrix Elements

SM-Interactions:

Kopp, Rocco, ZT, arXiv: 2401.07902

Vector:
$$
\langle p(p_p)|\bar{q}_u \gamma_\mu q_d | n(p_n) \rangle = \bar{u}_p(p_p) \Big[G_V(Q^2) \gamma_\mu + i \frac{\tilde{G}_T(v)(Q^2)}{2M_N} \sigma_{\mu\nu} q^\nu - \frac{\tilde{G}_S(Q^2)}{2M_N} q_\mu \Big] u_n(p_n)
$$

$$
\textbf{Axial:}~~\langle p(p_p) | \bar{q}_u \gamma_\mu \gamma_5 q_d | n(p_n) \rangle = \bar{u}_p(p_p) \Bigg[G_A(Q^2) \gamma_\mu \gamma_5 + i \frac{\tilde{G}_T(\mathcal{N}(Q^2))}{2 M_N} \sigma_{\mu\nu} q^{\nu} \gamma_5 - \frac{\tilde{G}_P(Q^2)}{2 M_N} q_\mu \gamma_5 \Bigg] u_n(p_n)
$$

 $\overline{}$

Hadronic Matrix Elements

SM-Interactions:

Vector:
$$
\langle p(p_p)|\bar{q}_u\gamma_\mu q_d|n(p_n)\rangle = \bar{u}_p(p_p)\Big[G_V(Q^2)\gamma_\mu + i\frac{\tilde{G}_T(v)(Q^2)}{2M_N}\sigma_{\mu\nu}q^\nu - \frac{\tilde{G}_S(Q^2)}{2M_N}q_\mu\Big]u_n(p_n)
$$

\n**Axial:** $\langle p(p_p)|\bar{q}_u\gamma_\mu\gamma_5 q_d|n(p_n)\rangle = \bar{u}_p(p_p)\Big[G_A(Q^2)\gamma_\mu\gamma_5 + i\frac{\tilde{G}_T(\sqrt{Q^2})}{2M_N}\sigma_{\mu\nu}q^\nu\gamma_5 - \frac{\tilde{G}_P(Q^2)}{2M_N}q_\mu\gamma_5\Big]u_n(p_n)$
\n**nonstrained by eN scattering**
\n 10^{-1}
\n 10^{-1}
\n 10^{-1}
\n 10^{-1}
\n 10^{-2}
\n 10^{-1}
\n 10^{-2}
\n 26
\n 26 <

Hadronic Matrix Elements

SM-Interactions:

Kopp, Rocco, ZT, arXiv: 2401.07902

$$
\textbf{Vector:} \quad \langle p(p_p) | \bar{q}_u \gamma_\mu q_d | n(p_n) \rangle = \bar{u}_p(p_p) \Bigg[G_V(Q^2) \gamma_\mu + i \frac{\tilde{G}_T(V)(Q^2)}{2M_N} \sigma_{\mu\nu} q^\nu - \frac{\tilde{G}_S(Q^2)}{2M_N} q_\mu \Bigg] u_n(p_n)
$$

$$
\textbf{Axial: } \langle p(p_p) | \bar{q}_u \gamma_\mu \gamma_5 q_d | n(p_n) \rangle = \bar{u}_p(p_p) \Bigg[G_A(Q^2) \gamma_\mu \gamma_5 + i \frac{\tilde{G}_T(A)(Q^2)}{2M_N} \sigma_{\mu\nu} q^{\nu} \gamma_5 - \frac{\tilde{G}_P(Q^2)}{2M_N} q_\mu \gamma_5 \Bigg] u_n(p_n)
$$

5/14/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 27

• Scalar: conservation of the vector current (CVC):

$$
G_S(Q^2)=-\frac{\delta M_N^{QCD}}{\delta m_q}G_V(Q^2)+\frac{Q^2/2M_N}{\delta m_q}\tilde{G}_S(Q^2)
$$

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

$$
G_P(Q^2) = \frac{M_N}{m_q} G_A(Q^2) + \frac{Q^2/2M_N}{2m_q} \tilde{G}_P(Q^2) \sim 350
$$

ØD2: neutrino–deuterium data (shaded band) ØRQCD Collaboration (hatched band)

Kopp, Rocco, ZT, arXiv: 2401.07902

Zahra Tabrizi, NTN fellow, Northwestern u.

• Scalar: conservation of the vector current (CVC):

$$
G_S(Q^2)=-\frac{\delta M_N^{QCD}}{\delta m_q}G_V(Q^2)+\frac{Q^2/2M_N}{\delta m_q}\tilde{G}_S(Q^2)
$$

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

$$
G_P(Q^2) = \frac{M_N}{m_q} G_A(Q^2) + \frac{Q^2/2M_N}{2m_q} \tilde{G}_P(Q^2) \sim 350
$$

- Tensor: LQCD and theoretical considerations
	- \circ **We cannot neglect** \widetilde{G}_S **anymore!**
	- o **Large enhancements for several interactions;**

Kopp, Rocco, ZT, arXiv: 2401.07902

Zahra Tabrizi, NTN fellow, Northwestern \cup .

Kopp, Rocco, ZT, arXiv: 2401.07902

 \circ We have the tools to do a global EFT analysis with all neutrino ex

o Extracting 10 TeV physics from GeV neutrino experiments!

5/14/2024

Kopp, Rocco, ZT, arXiv: 2401.07902

- o CCQE Neutrino-Nucleus Scattering;
- o All non-standard interactions;
- o For all neutrino Flavors;

5/14/2024

o Including Nuclear effects;

Zahra Tabrizi, NTN fellow, Northwestern U. 38

o Quantifying various Uncertainties;

Kopp, Rocco, ZT, arXiv: 2401.07902

 \circ We have the tools to do a global EFT analysis with all neutrino experiments;

Extracting 10 TeV physics from GeV neutrino experiments!

Pion decay Due to the pseudoscalar nature of the pion, it is sensitive only to axial $(\epsilon_L - \epsilon_R)$ and pseudo-scalar (ϵ_P) interactions. Production **Falkowski, González-Alonso, Kopp, Soreq,** *ZT***, JHEP (2021)**

$$
p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = \frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},
$$

$$
p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}(m_u + m_d)^2}.
$$

$$
\pi^{-}\left\{\begin{matrix} d & \xrightarrow{\hspace{13mm}} & W^{-} \\ \overline{u} & \xrightarrow{\hspace{13mm}} & W^{-} \\ \overline{w} & \xrightarrow{\hspace{13mm}} & W^{-} & \xrightarrow{\overline{V}_{\mu}} \\ & \pi^{-}(d\overline{u}) \rightarrow \mu^{-} + \overline{v}_{\mu} & \xrightarrow{\hspace{13mm}} & W^{-} \end{matrix}\right.
$$

• Larger $p_{XY} \implies$ smaller ϵ !

 $\boldsymbol{\phi}^{Total} \sim \boldsymbol{\phi}^{SM} (1+\varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$

$$
\left\langle 0|\,\bar{d}\gamma^{\mu}\gamma_{5}u\,|\pi^{+}(p_{\pi})\rangle =ip_{\pi}^{\mu}f_{\pi}
$$
\n
$$
\left\langle 0|\,\bar{d}\gamma_{5}u\,|\pi^{+}(p_{\pi})\right\rangle =-i\frac{m_{\pi}^{2}}{m_{u}+m_{d}}f_{\pi}
$$

Huge overall flux normalization for pion decay!

5/14/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 40

Production **kaon decay**

Falkowski, González-Alonso, Kopp, Soreq, *ZT***, JHEP (2021)**

Detection

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

DIS

Specific New Physics Models

ε_L: measures deviations of the W boson to quarks and leptons, compared to the **SM prediction**

ε_R: left-right symmetric SU(3)_CxSU(2)_LxSU(2)_RxU(1)_X models introduce new **charged vector bosons W' coupling to right-handed quarks**

ε_{S.P.T}: In leptoquark models, new scalar particles couple to both quarks and **leptons**

 $\overline{\nu}$

 \overline{d}

 $\overline{\mathcal{U}}$

 \boldsymbol{e}

Indirect Searches: Future Directions

- o EFT global fit in neutrino oscillation experiments;
- o Extraction of oscillation parameters in presence of general new physics;
- o Preparing a public software package and implementing the EFT results: e.g. GLoBES-EFT;
- o Comparison between the sensitivity of oscillation and other low/high energy experiments;

Neutrinos are not pure flavor states:

Neutrinos are not pure flavor states:

$$
|\nu_\alpha^s\rangle=\frac{(1+\epsilon^s)_{\alpha\gamma}}{N^s_\alpha}|\nu_\gamma\rangle\ ,\ \ \langle\nu_\beta^d|=\langle\nu_\gamma|\frac{(1+\epsilon^d)_{\gamma\beta}}{N^d_\beta}
$$

Observable: rate of detected events

∼(flux)×(det. cross section)×(oscillation)

$$
R^{\text{QM}}_{\alpha\beta} = \Phi^{\text{SM}}_{\alpha} \sigma^{\text{SM}}_{\beta} \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]^*_{\alpha l} [x_d]_{\beta k} [x_d]^*_{\beta l}
$$

$$
x_s \equiv (1 + \epsilon^s)U^* \& x_d \equiv (1 + \epsilon^d)^T U
$$

Falkowski, González-Alonso, *ZT***, JHEP (2019)**

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

- Can one "validate" QM-NSI approach from the QFT results? Yes…
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No…

Observable is the same, we can match the two (only at the linear level)

$$
\epsilon_{\alpha\beta}^{s} = \sum_{X} p_{XL} [\epsilon_X]_{\alpha\beta}^{*}, \quad \epsilon_{\beta\alpha}^{d} = \sum_{X} d_{XL} [\epsilon_X]_{\alpha\beta}
$$

Falkowski, González-Alonso, *ZT***, JHEP (2019)**

Comparing QM and QFT

Only at the linear order:

Falkowski, González-Alonso, *ZT***, JHEP (2019)**

- Different NP interactions appear at the source or detection simultaneously
- Some of the p_{XL}/d_{XL} coefficients depend on the neutrino energy
- There are chiral enhancements in some cases

These correlations, energy dependence etc. cannot be seen in the traditional QM approach.

Comparing QM and QFT

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

$$
p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}
$$

This is always satisfied for new physics correcting V-A interactions only as $p_{LL} = d_{LL} = 1$ by definition

However for non-V-A new physics the consistency condition is not satisfied in general

 $5/14/2024$ Zahra Tabrizi, NTN fellow, Northwestern UNeutrino Energy E_v [GeV] 50

FASER**ν**

- Downstream of ATLAS at of 480 m;
- Ideal for detecting high-energy neutrinos at LHC;
- 1.1-t of tungsten material;
- Several production modes;
- Pion and Kaon decays are the dominant ones;

ATLAS

Neutrino Energy E_v [GeV]

Neutrino Energy E_v [GeV]

Neutrino Energy E_v [GeV]

LHC

FASER

UJ12

 $10⁴$

 $10⁴$

 $T112$

EFT at FASERV

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- Results are statistics dominated: $v_e{\sim}1000$, $v_\mu{\sim}5000$, $v_\tau{\sim}10$
- Optimistic systematic uncertainties: 5% on v_e , 10% on v_μ , 15% on v_τ
- Conservative systematic uncertainties: 30% on v_e , 40% on v_u , 50% on v_{τ}

EFT at FASERV

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- **FASER**_v: colored bars
- Top: Conservative/Optimistic flux uncertainties
- Bottom: High luminosity LHC

- **No SM Oscillation;** \circ
- **Access to all Flavors;** \circ
- Low statistics; Ω
- **But large Flux Enhancements;** \circ

New physics reach at multi-TeV

Reactor Experiments

Daya Bay:

- 6 reactor cores;
- 8 anti-neutrino detectors;
- 3 near and far experimental halls located at 400 m, 512 m and 1610 m;
- Has observed **~** 4 million anti-neutrino events in 1958 days of data taking;

Daya Bay Collaboration, D. Adey et al., (2018)

RENO:

- 6 reactor cores;
- 2 near and far anti-neutrino detectors located at 367 m and 1440 m;
- Has observed **~** 1 million anti-neutrino events in 2200 days of data taking

RENO Collaboration, G. Bak et al., (2018)

Zahra Tabrizi, NTN fellow, Northwestern U. 54

Inverse Beta Decay Detection

Falkowski, González-Alonso, ZT, JHEP (2019)

$$
p^+ + \overline{\nu}_e \rightarrow e^+ + n^0
$$

 $d_{LL}=1,\quad d_{RL}=\frac{1-3g_A^2}{1+3g_A^2},\quad d_{SL}=d_{SR}=-\frac{g_S}{1+3g_A^2}\frac{m_e}{E_\nu-\Delta},\quad d_{TL}=-d_{TR}=\frac{3g_Ag_T}{1+3g_A^2}\frac{m_e}{E_\nu-\Delta}$ IBD will be sensitive to the

scalar and topsor NIPI

Scalar and topsor NIPI scalar and tensor NP! $\Delta \equiv m_n - m_p \approx 1.29 \text{ MeV}$

 $g_A = 1.2728 \pm 0.0017$, $g_S = 1.02 \pm 0.11$, $g_P = 349 \pm 9$, $g_T = 0.987 \pm 0.055$.

$$
\sigma^{Total} \sim \sigma^{SM} (1+\varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})
$$

Inverse Beta Decay Detection

Falkowski, González-Alonso, ZT, JHEP (2019)

$$
p^+ + \overline{\nu}_e \rightarrow e^+ + n^0
$$

DO NOT depend on neutrino energy!!!

$$
\sigma^{Total} \sim \sigma^{SM} (1+\varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})
$$

EFT and Oscillation: Reactor Experiments

Daya Bay Collaboration:

- o **SM Oscillation;**
- o **Access to one Flavors;**
- o **Very High statistics;**
- o **But EFT-Oscillation degeneracy;**

arXiv:2401.02901 Falkowski, González-Alonso, ZT, JHEP (2019)

• Combining with other experiments will increase the sensitivity