Measurement of beam polarization at e⁺e⁻ B-Factory with a new tau polarimetry technique

Swagato Banerjee

LOUISVILLE.

May 13-17, 2024 University of Pittsburgh / Carnegie Mellon University Pittsburgh, PA, USA indico.cern.ch/e/dpfpheno24

Motivation: Chiral Belle

Rich physics program via beam polarization upgrade of SuperKEKB

- Goal is 70% longitudinal polarization of e- beam at interaction point (IP)
- Precise control of beam polarization:
 - Compton Polarimeter: Moller scattering
 - Tau Polarimetry: independent of spin and beam transport model

Precision electroweak physics

- Adapted from Fig. 3 of <u>H. Davoudiasl, H.S. Lee and W.J. Marciano, Phys.Rev.D 92 (2015) 05505.</u>
- Red bars shows expected ± 1 sigma uncertainty = 0.0002 with 40 ab^{-1} at Chiral Belle [placed at arbitrary positions].
- Also sensitive to parity violation induced by exchange of heavy particles e.g. a hypothetical TeV-scale Z' boson, which couples only to lepton and are uniquely produced at e⁺e⁻ colliders and not in pp collisions.

Tau Polarimetry

UofL

Swagato Banerjee

• Polarization of $\tau's(P_{\tau})$ related to polarization of e^{-} beam (P_{e})

• $\langle P_{\tau} \rangle$ from decay products in $\tau^- \to \pi^- \nu_{\tau}$ decays

Tau Polarimetry

• Also for $\tau^- \to \nu_\tau \rho^- (\to \pi^- \pi^0), \tau^- \to \nu_\tau a_1^- (\to \pi^- \pi^0 \pi^0)$ decays

• $\langle P_{\tau} \rangle$ measured from kinematics of tau decay products

S.Raychaudhuri, D.P.Roy Phys. Rev. D53 (1996) 4902

Tau Polarimetry

Swagato Banerjee UofL

BaBar at PEP-II

• BaBar & PEP-II operated at SLAC between 1999 and 2008

- This analysis uses 432 fb⁻¹ of data over 6 run periods at $\Upsilon(4S)$
- No beam polarization expected at PEP-II

Tau Polarimetry

Event topology

• Events selected in 1-vs-1 topology perpendicular to the thrust axis

• Tag-side:
$$\tau^+ \to \ell^+ \nu_\ell \bar{\nu}_\tau$$
 ($\ell = e, \mu$)

• Signal-side:
$$\tau^- \to \pi^- \pi^0 \nu_{\tau}$$

- Charged tracks required to lie within acceptance of calorimeter
- Opening angle between charged and neutral pions satisfies $\cos \alpha < 0.9$
- 5.5 million τ -pair events selected

MC source	Fraction
Bhabha	0.046%
$\mu^+\mu^-$	0.046%
$u\overline{u},\!d\overline{d},\!s\overline{s}$	0.030%
$c\overline{c}$	0.006%
$b\overline{b}$	0.000%
$\tau^+ \tau^-$	99.871%

Tau Signal	Fraction
$\tau^- \to e^- \overline{\nu}_e \nu_\tau$	0.018%
$ au^- ightarrow \mu^- \overline{ u}_\mu u_ au$	0.031%
$ au^- ightarrow \pi^- u_ au$	0.035%
$ au^- o ho^- u_ au o \pi^- \pi^0 u_ au$	87.858%
$ au o (a_1 o \pi^{\pm} \pi^0 \pi^0) \overline{ u}_{ au}$	9.785%
$\tau \rightarrow \text{else}$	2.145%

Tau Polarimetry

Swagato Banerjee UofL

Polarization observables

Tau Polarimetry

8

Swagato Banerjee UofL

Polarization observables

Angle between direction of τ^- and momentum of ρ^- in center-of-mass frame

$$\cos\theta^{\star} = \frac{2z - 1 - m_{\rho}^2/m_{\tau}^2}{1 - m_{\rho}^2/m_{\tau}^2} \qquad z \equiv \frac{E_{\rho}}{E_{\text{beam}}}$$

Hagiwara, Martin, Zeppenfeld Phys. Lett B235 (1990) 198

Polarimetry

Polarization observables

Angle between direction of ρ^{-} and momentum of π^{-} in center-of-mass frame

$$\cos\psi = \frac{2x-1}{\sqrt{1-m_{\pi}^2/m_{\rho}^2}} \qquad x \equiv \frac{E_{\pi}}{E_{\rho}}$$

Hagiwara, Martin, Zeppenfeld Phys. Lett B235 (1990) 198

Polarimetry

Template fit

2-parameter (a_l, a_r) fit to 3-dimensional histograms of $(\cos \theta, \cos \theta^*, \cos \psi)$

Barlow, Beeston Comput. Phys. Commun. 77 (1993) 219-228

Tau Polarimetry

Data/MC

UofL Swagato Banerjee

Fit calibration

- Half of Monte Carlo used for templates, other half fitted
- Fit to polarization samples from -1 to 1 in steps of 0.1
- 70% polarization sample = 85% left-, 15% right-polarized
- Diagonal line shows optimal correlation in fit calibration

Polarimetry

Fit results

	-	-	
Data Set (fb^{-1})	Positive Charge	Negative Charge	Average Polarization
Run 1 (20.4)	$0.0018 {\pm} 0.014$	-0.0047 ± 0.014	-0.0014 ± 0.010
Run 2 (61.3)	$0.0075 {\pm} 0.0083$	$0.0007 {\pm} 0.0083$	$0.0041{\pm}0.0059$
Run 3 (32.3)	$0.0151{\pm}0.012$	-0.0047 ± 0.012	$0.0048{\pm}0.0083$
Run 4 (99.6)	-0.0035 ± 0.0072	$0.0010 {\pm} 0.0067$	-0.0011 ± 0.0049
Run 5 (132.3)	-0.0028 ± 0.0062	$0.0136{\pm}0.0064$	$0.0052{\pm}0.0045$
Run 6 (78.3)	$0.0036{\pm}0.0089$	$0.0133{\pm}0.0088$	$0.0084{\pm}0.0062$
$424.18{\pm}1.8$	$0.0015 {\pm} 0.0034$	$0.0055 {\pm} 0.0034$	$0.0035 {\pm} 0.0024$

Systematic uncertainties

	Source	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Combined
Neutral (π^0 efficiency (VII A 1)	0.0025	0.0016	0.0013	0.0018	0.0006	0.0017	0.0013
	Muon PID (VIIC)	0.0018	0.0018	0.0029	0.0011	0.0006	0.0016	0.0012
shower	Split-off modeling $(VIIB1)$	0.0015	0.0017	0.0016	0.0006	0.0016	0.0020	0.0011
	Neutral energy calibration $(VIIA2)$	0.0027	0.0012	0.0023	0.0009	0.0014	0.0008	0.0010
modeling	$\pi^0 \max (\operatorname{VII} \operatorname{B} 2)$	0.0018	0.0028	0.0010	0.0005	0.0004	0.0004	0.0008
modering	$\cos \alpha (\text{VIIB3})$	0.0015	0.0009	0.0016	0.0007	0.0005	0.0005	0.0007
dominated	π^0 likelihood (VII B 4)	0.0015	0.0009	0.0015	0.0006	0.0003	0.0010	0.0006
	Electron PID $(VIIC)$	0.0011	0.0020	0.0008	0.0006	0.0005	0.0001	0.0005
	Particle transverse momentum $(VIIB5)$	0.0012	0.0007	0.0009	0.0002	0.0003	0.0006	0.0004
	Boost modeling (VII A 3)	0.0004	0.0019	0.0003	0.0004	0.0004	0.0004	0.0004
	Momentum calibration $(VIIA4)$	0.0001	0.0014	0.0005	0.0002	0.0001	0.0003	0.0004
	Max EMC acceptance $(VIIB7)$	0.0001	0.0011	0.0008	0.0001	0.0002	0.0005	0.0003
	au direction definition (VIIA5)	0.0003	0.0007	0.0008	0.0003	0.0001	0.0004	0.0003
	Angular resolution $(VIIA6)$	0.0003	0.0008	0.0003	0.0003	0.0002	0.0003	0.0003
	Background modeling (VIIA7)	0.0005	0.0006	0.0010	0.0002	0.0003	0.0003	0.0003
	Event transverse momentum $(VIIB6)$	0.0001	0.0013	0.0005	0.0002	0.0002	0.0004	0.0003
	Momentum resolution $(VIIA4)$	0.0001	0.0012	0.0004	0.0002	0.0001	0.0005	0.0003
	ρ mass acceptance (VII B 8)	0.0000	0.0011	0.0003	0.0001	0.0002	0.0005	0.0003
	au branching fraction (VIIA8)	0.0001	0.0007	0.0004	0.0002	0.0002	0.0002	0.0002
	$\cos \theta^{\star}$ acceptance (VIIB9)	0.0002	0.0006	0.0004	0.0001	0.0001	0.0004	0.0002
	$\cos \psi$ acceptance (VII B 9)	0.0002	0.0003	0.0002	0.0002	0.0002	0.0003	0.0002
	Total	0.0058	0.0062	0.0054	0.0030	0.0026	0.0038	0.0029

Tau Polarimetry

Compton Polarimeter

- Scattering of electron beam with a circular polarized laser
- Placed at 210 m upstream from interaction point
- Online measurement performed bunch-by-bunch

Tau

Polarimetry

• Systematic uncertainty $\simeq 0.5\%$ & statistical uncertainty $\simeq 1\%$ in 5 minutes

Conceptual study of a Compton polarimeter for the upgrade of the SuperKEKB collider with a polarized electron beam D. Charlet, T. Ishibashi, A. Martens, M. Masuzawa, F. Mawas, Y. Peinaud, D. Zhou and F. Zomer Journal of Instrumentation, Volume 18, October 2023 P10014

Swagato Banerjee

- Proposed upgrade of SuperKEKB/Belle II

 Chiral Belle with 70% polarized electron beams
 τ decays complements Compton polarimeters to measure (P_{beam})
- Open up a unique window of Electroweak precision measurements
 Neutral current vector coupling universality
- Chiral Belle probes parity violation both at low & high energy:
 - When Dark Z is off-shell and couples more to 3rd generation
 - TeV-scale Z' which couples only to leptons
- Tau polarimetry method demonstrated with 432 fb⁻¹ of BaBar data
 ⟨P⟩ = 0.0035 ± 0.0024 (stat) ± 0.0029 (syst)
 Opminant systematics related to modeling of neutral processes

Phys.Rev.D 108 (2023) 9, 092001 • e-Print: 2308.00774 [hep-ex]

Tau
Polarimetry