# Precision unification and the scale of supersymmetry

Prudhvi N. Bhattiprolu

University of Michigan

DPF-Pheno 2024 University of Pittsburgh May 13

Based on work with James D. Wells, arXiv:hep-ph/2309.12954

Supersymmetry:  $Q |\text{Fermion}\rangle = |\text{Boson}\rangle, Q |\text{Boson}\rangle = |\text{Fermion}\rangle$ 

Standard Model

| Spin 0        | Spin $1/2$         | $SU(3)_c \times SU(2)_L \times U(1)_Y$          |
|---------------|--------------------|-------------------------------------------------|
| $(H^+ \ H^0)$ |                    | $( {f 1}  ,  {f 2}  ,  {1\over 2}  )$           |
|               |                    |                                                 |
|               | $(u_L \ d_L)_i$    | $(\ {f 3} \ , \ {f 2} \ , \ {f {1}\over 6} \ )$ |
|               | $u_{Ri}^{\dagger}$ | $(\overline{3},1,-rac{2}{3})$                  |
|               | $d^{\dagger}_{Ri}$ | $(\overline{f 3},{f 1},{1\over 3})$             |
|               | $(\nu \ e_L)_i$    | $( {f 1}  ,  {f 2}  ,  - {1\over 2}  )$         |
|               | $e_{Ri}^{\dagger}$ | (1, 1, 1)                                       |

| Spin $1/2$ | Spin 1         | $SU(3)_c \times SU(2)_L \times U(1)_Y$ |
|------------|----------------|----------------------------------------|
|            | g              | (8, 1, 0)                              |
|            | $W^{\pm}, W^0$ | (1, 3, 0)                              |
|            | $B^0$          | (1, 1, 0)                              |

For a detailed review: see, e.g. S. P. Martin, hep-ph/9709356 (SUSY primer); H. Dreiner, H. Haber, S. P. Martin, From Spinors to Supersymmetry (book) Supersymmetry:  $Q |\text{Fermion}\rangle = |\text{Boson}\rangle, Q |\text{Boson}\rangle = |\text{Fermion}\rangle$ 

| Spin 0                                        | Spin $1/2$                                | $SU(3)_c \times SU(2)_L \times U(1)_Y$     |
|-----------------------------------------------|-------------------------------------------|--------------------------------------------|
| $\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$ | $(\widetilde{H}_u^+ \ \widetilde{H}_u^0)$ | $(1, 2, \frac{1}{2})$                      |
| $\begin{pmatrix} H^0_d & H^d \end{pmatrix}$   | $(\widetilde{H}^0_d \ \widetilde{H}^d)$   | $( {f 1}  ,  {f 2}  ,  - {1\over 2}  )$    |
| $(\widetilde{u}_L \ \widetilde{d}_L)_i$       | $(u_L \ d_L)_i$                           | $(\ {f 3}\ ,\ {f 2}\ ,\ {f {1}\over 6}\ )$ |
| $\widetilde{u}_{Ri}^*$                        | $u_{Ri}^{\dagger}$                        | $(\overline{f 3},{f 1},-{2\over 3})$       |
| $\widetilde{d}^*_{Ri}$                        | $d_{R_i}^{\dagger}$                       | $( \overline{f 3}, {f 1}, {1\over 3})$     |
| $(\widetilde{ u} \ \widetilde{e}_L)_i$        | $(\nu \ e_L)_i$                           | $( {f 1}  ,  {f 2}  ,  - {1\over 2}  )$    |
| $\widetilde{e}_{Ri}^*$                        | $e^{\dagger}_{Ri}$                        | (1, 1, 1)                                  |
|                                               |                                           |                                            |

Minimal Supersymmetric Standard Model

| Spin $1/2$                               | Spin 1         | $SU(3)_c \times SU(2)_L \times U(1)_Y$ |
|------------------------------------------|----------------|----------------------------------------|
| $\widetilde{g}$                          | g              | (8, 1, 0)                              |
| $\widetilde{W}^{\pm}, \widetilde{W}^{0}$ | $W^{\pm}, W^0$ | (1, 3, 0)                              |
| $\widetilde{B}^0$                        | $B^0$          | (1, 1, 0)                              |

For a detailed review: see, e.g. S. P. Martin, hep-ph/9709356 (SUSY primer); H. Dreiner, H. Haber, S. P. Martin, From Spinors to Supersymmetry (book)

- Origin of the weak scale
- A light Higgs  $M_h = 125 \text{ GeV}$
- Gauge coupling unification
- Viable dark matter candidate

...

- Origin of the weak scale
- A light Higgs  $M_h = 125 \text{ GeV}$
- Gauge coupling unification
- Viable dark matter candidate

• • • •

Where are the superpartners?

- Origin of the weak scale
- A light Higgs  $M_h = 125 \text{ GeV}$
- Gauge coupling unification
- Viable dark matter candidate

• • • •

### Where are the superpartners?

LHC: Perhaps above the TeV scale (using simplifying assumptions)

- Origin of the weak scale
- A light Higgs  $M_h = 125 \text{ GeV}$
- Gauge coupling unification
- Viable dark matter candidate

...

### Where are the superpartners?

LHC: Perhaps above the TeV scale (using simplifying assumptions)

Theory: Superpartners can get their masses entirely from  $\mathcal{L}_{soft}$ , and therefore can be much heavier than weak scale

Precision unification conjecture:

Supersymmetry is a correct principle of nature, and the gauge couplings unify at a high scale with high-scale threshold corrections much smaller in magnitude than naive expectations from GUTs Precision unification conjecture:

Supersymmetry is a correct principle of nature, and the gauge couplings unify at a high scale with high-scale threshold corrections much smaller in magnitude than naive expectations from GUTs

We explored the implications of precision unification on the superpartner masses in

- $\blacksquare$  MSSM with a common mass threshold  $\tilde{m}$
- Minimal supergravity
- Minimal anomaly mediation

Precision unification conjecture:

Supersymmetry is a correct principle of nature, and the gauge couplings unify at a high scale with high-scale threshold corrections much smaller in magnitude than naive expectations from GUTs

We explored the implications of precision unification on the superpartner masses in

- $\blacksquare$  MSSM with a common mass threshold  $\tilde{m}$
- Minimal supergravity
- Minimal anomaly mediation

Used SPHENO for generating MSSM spectra in high-scale scenarios

## MSSM with a common threshold:

As a measure of unification of the gauge couplings, define

$$\frac{\rho_{\lambda}}{48\pi^2} \equiv \sqrt{\sum_{i\neq j} \left(\frac{1}{g_i^2} - \frac{1}{g_j^2}\right)^2}$$

with  $\rho_{\lambda}^{\min} \equiv \rho_{\lambda}(\mu_{\star}).$ 



## MSSM with a common threshold:

As a measure of unification of the gauge couplings, define

$$\frac{\rho_{\lambda}}{48\pi^{2}} \equiv \sqrt{\sum_{i\neq j} \left(\frac{1}{g_{i}^{2}} - \frac{1}{g_{j}^{2}}\right)^{2}}$$
with  $\rho_{\lambda}^{\min} \equiv \rho_{\lambda}(\mu_{\star})$ .  

$$\frac{\rho_{\lambda}}{10} = \frac{1}{20} = \frac{1}{20}$$

$$\frac{SU(3)}{10} = \frac{1}{20} = \frac{1}{20}$$

$$\frac{SU(3)}{10} = \frac{1}{20} = \frac{1}{20}$$

$$\frac{SU(3)}{10} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20}$$

60 I

50

40

Standard GUTs:  $\rho_{\lambda}^{\min} \sim \mathcal{O}(100)$  [S. Raby, SUSY GUTS, Vol. 939 (Springer, 2017)]

Precision unification: we require  $\rho_{\lambda}^{\min} < 20 \left( \sim 3 \times \frac{\mu_*}{M_P} \right)$ 

16 18





Precision unification achieved if  $\tilde{m} \sim 1 - 10$  TeV range!

# High-scale scenarios:

## Minimal supergravity:

- Supersymmetry-breaking is gravity-mediated
- Inputs at GUT scale:  $m_0, m_{1/2}, \tan\beta, \operatorname{sign}(\mu), A_0 \ (= 0 \text{ in our analysis})$
- $M_a = g_a^2/g_\star^2 \ m_{1/2}$
- $M_1: M_2: M_3 \approx 1:2:6$  ( $\widetilde{B}$  is the lightest gaugino)
- Lightest  $\widetilde{N}$  can be bino/Higgsino-like

## Minimal anomaly mediation:

- Supersymmetry-breaking via a superconformal Weyl anomaly
- Inputs at GUT scale:  $m_0, m_{3/2}, \tan\beta, \operatorname{sign}(\mu)$
- $M_a = \beta_a/g_a \ m_{3/2}$
- $M_1: M_2: M_3 \approx 3.3: 1: 10 \ (\widetilde{W} \text{ is the lightest gaugino})$
- Lightest  $\widetilde{N}$  can be wino/Higgsino-like

# High-scale scenarios

Minimal supergravity

Minimal anomaly mediation



• Gray: precision unification and  $M_h \sim 125 \text{ GeV}$ 

# High-scale scenarios

Minimal supergravity

Minimal anomaly mediation



- Gray: precision unification and  $M_h \sim 125 \text{ GeV}$
- **Red**: candidate Higgsino DM assuming *R*-parity ( $\mu \sim 1.1 \text{ TeV}$ )
- **Blue:** candidate wino DM assuming *R*-parity ( $M_2 \sim 2.8 \text{ TeV}$ )

#### Minimal supergravity

#### Minimal anomaly mediation



- Gray: precision unification and  $M_h \sim 125 \text{ GeV}$
- **Red**: candidate Higgsino DM assuming *R*-parity ( $\mu \sim 1.1 \text{ TeV}$ )
- **Blue:** candidate wino DM assuming *R*-parity ( $M_2 \sim 2.8 \text{ TeV}$ )

Minimal supergravity

Minimal anomaly mediation



• Precision unification requires  $M_{SUSY} \sim \text{few TeV to PeV range}!$ 

#### Minimal supergravity

#### Minimal anomaly mediation



- Largely unexplored by LHC or lies well beyond its reach!
- $\blacksquare$  Direct detection:  $\tilde{N}_1$  LSP extremely pure Higgsino for Higgsino DM
- Indirect detection: wino DM experimentally less viable

## Conclusions

- Precise gauge coupling unification favors superpartner masses that are in the range of several TeV and well beyond!
- $\blacksquare$  We demonstrated this in
  - MSSM with a common threshold
  - Minimal supergravity
  - Minimal anomaly mediation
- We further identified models with a Higgsino or wino DM candidate
- LHC results have had essentially no impact on the viability of supersymmetric unified theories SUSY is alive and well!