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Supersymmetry: Q |Fermion⟩ = |Boson⟩, Q |Boson⟩ = |Fermion⟩

Standard Model
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Spin 1/2 Spin 1 SU(3)c × SU(2)L × U(1)Y

g ( 8 , 1 , 0 )

W±,W 0 ( 1 , 3 , 0 )

B0 ( 1 , 1 , 0 )

For a detailed review: see, e.g. S. P. Martin, hep-ph/9709356 (SUSY primer);
H. Dreiner, H. Haber, S. P. Martin, From Spinors to Supersymmetry (book)
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Minimal Supersymmetric Standard Model
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Supersymmetry still remains a plausible extension to the SM:

Origin of the weak scale

A light Higgs Mh = 125 GeV

Gauge coupling unification

Viable dark matter candidate

. . .

Where are the superpartners?

LHC: Perhaps above the TeV scale (using simplifying assumptions)

Theory: Superpartners can get their masses entirely from Lsoft, and
therefore can be much heavier than weak scale
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Precision unification conjecture:

Supersymmetry is a correct principle of nature, and the gauge couplings
unify at a high scale with high-scale threshold corrections much smaller in
magnitude than naive expectations from GUTs

We explored the implications of precision unification on the superpartner
masses in

MSSM with a common mass threshold m̃

Minimal supergravity

Minimal anomaly mediation

Used SPheno for generating MSSM spectra in high-scale scenarios
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MSSM with a common threshold:

As a measure of unification of the
gauge couplings, define

ρλ
48π2

≡

√√√√∑
i̸=j

(
1

g2i
− 1

g2j

)2

with ρmin
λ ≡ ρλ(µ⋆).
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Standard GUTs: ρmin
λ ∼ O(100) [S. Raby, SUSY GUTs, Vol. 939 (Springer, 2017)]

Precision unification: we require ρmin
λ < 20

(
∼ 3× µ⋆

MP

)
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m̃ = MZ

1 TeV10 TeV

100 TeV

1 PeV

Precision unification achieved if m̃ ∼ 1− 10 TeV range!
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High-scale scenarios:

Minimal supergravity:

• Supersymmetry-breaking is gravity-mediated

• Inputs at GUT scale: m0,m1/2, tanβ, sign(µ), A0 (= 0 in our analysis)

• Ma = g2a/g
2
⋆ m1/2

• M1 : M2 : M3 ≈ 1 : 2 : 6 (B̃ is the lightest gaugino)

• Lightest Ñ can be bino/Higgsino-like

Minimal anomaly mediation:

• Supersymmetry-breaking via a superconformal Weyl anomaly

• Inputs at GUT scale: m0,m3/2, tanβ, sign(µ)

• Ma = βa/ga m3/2

• M1 : M2 : M3 ≈ 3.3 : 1 : 10 (W̃ is the lightest gaugino)

• Lightest Ñ can be wino/Higgsino-like
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High-scale scenarios

Minimal supergravity
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Gray: precision unification and Mh ∼ 125 GeV
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Gray: precision unification and Mh ∼ 125 GeV

Red: candidate Higgsino DM assuming R-parity (µ ∼ 1.1 TeV)

Blue: candidate wino DM assuming R-parity (M2 ∼ 2.8 TeV)
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Minimal supergravity
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Minimal supergravity
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Precision unification requires MSUSY ∼ few TeV to PeV range!
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Minimal supergravity
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Largely unexplored by LHC or lies well beyond its reach!

Direct detection: Ñ1 LSP extremely pure Higgsino for Higgsino DM

Indirect detection: wino DM experimentally less viable
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Conclusions

Precise gauge coupling unification favors superpartner masses that are
in the range of several TeV and well beyond!

We demonstrated this in

• MSSM with a common threshold
• Minimal supergravity
• Minimal anomaly mediation

We further identified models with a Higgsino or wino DM candidate

LHC results have had essentially no impact on the viability of
supersymmetric unified theories - SUSY is alive and well!
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