

PROJECT 8: MEASURING THE NEUTRINO MASS USING CYCLOTRON RADIATION EMISSION SPECTROSCOPY

Luiz de Viveiros - Penn State **Project 8 Collaboration**

BETA DECAYS AND THE NEUTRINO MASS

- Neutrino flavor oscillations \Rightarrow neutrino masses > 0 eV/c²
- Absolute mass scale and ordering are still unknown
- \cdot Tritium β spectroscopy is the leading technique for direct neutrino mass measurements
 - Beta decay endpoint should match the mass difference (~18.6 keV) for $m_{{
 m v}_{
 m
 ho}}=0$
 - Determine the neutrino mass from the shape of the tritium β-decay spectrum endpoint

PHENO 2024

n

³H

p

β-decay

р

p

n

- New spectroscopy technique: Cyclotron **Radiation Emission Spectroscopy (CRES)**
- •Formaggio and Monreal, Phys. Rev. D 80, 051301(R), 2009
- •Electron on a magnetic field: cyclotron motion; emitted cyclotron radiation depends on electron kinetic energy
- •Frequency falls in the microwave K-band for ~ 1 T fields
- Tritium endpoint at 18.6 keV \implies For B ~ 0.95 T, f ~ 25.6 GHz
- •^{83m}Kr conversion electrons (e.g. 17.8 keV) can be used for calibration \rightarrow f ~ 25.0 - 26.5 GHz
- •Radiated Power P = ~ 1 fW for 18.6 keV electrons
- Surprisingly, this had never been observed for a single electron!

THE IDEA: CYCLOTRON RADIATION EMISSION SPECTROSCOPY

$$f_{\gamma} = \frac{eB}{2\pi(m_e + K/c^2)}$$

kinetic energy factor

•Sensitivity to 40 meV/c² neutrino mass

•Measure neutrino mass or exclude inverted ordering

Case Western Reserve University

Indiana University

Johannes Gutenberg University, Mainz

Lawrence Berkeley National Laboratory

Lawrence Livermore **National Laboratory**

University of Illinois

University of Pittsburgh

de Viveiros - Penn State

PROJECT 8

Heidelberg University

Karlsruhe Institute of Technology

Massachusetts Institute of Technology

University of Texas, Arlington

University of Washington

National Laboratory Yale Yale University

Pacific Northwest

S

Pennsylvania State University

PHENO 2024

THE PROJECT 8 SCIENTIFIC PROGRAMME: A PHASED APPROACH

Phase I:

Demonstrate CRES technique on 83mKr mono-energetic electrons.

Phase II:

Acquire Tritium spectrum. Extract endpoint. Study systematics and backgrounds.

Phase III:

(a) "Large Volume" CRES

(b) Atomic tritium production and trapping at high densities

Phase IV:

_arge atomic tritium experiment. Inverted mass ordering reach (40 meV)

PHASES | AND || - THE DETECTOR

•Assembled at the University of Washington in Seattle, WA

de Viveiros - Penn State

PHENO 2024

MEASURING THE CYCLOTRON RADIATION

- First detection of single-electron cyclotron radiation Phys. Rev. Lett. 114, 162501 (2015)
- •Shallow harmonic trap for high precision scans, deep harmonic trap for high statistics

de Viveiros - Penn State

PHASE II TRITIUM RESULTS

 Long science run completed in 2020 	-
 82 net days of data taking, 3770 events 	175-
 4 trapping coils, 1 mm³ effective volume 	150 -
 T₂ endpoint measurement in 	125-
agreement with literature	ŝ
•Frequentist: $E_0 = (18548^{+19}_{-19}) eV(1\sigma)$	- 100 - no
• Bayesian: $E_0 = (18553^{+18}_{-19}) eV(1\sigma)$	O 75-
 First neutrino mass measurement 	50 -
using CRES !	25-
•Frequentist: $\leq 152 \text{eV/c}^2 (90\% \text{C.L})$	
•Bayesian: $\leq 155 \mathrm{eV/c^2} (90\% \mathrm{C.L})$	0 -
 No events past endpoint 	
⇒ sets limit on background rate:	Ph
$\leq 3 \times 10^{-10} \text{eV}^{-1} \text{s}^{-1} (90\% \text{C.L.})$	P
de Viveiros - Penn State	Pł

PHENO 2024

Phase I:

Demonstrate CRES technique on 83mKr mono-energetic electrons. Status: Complete! Technique demonstrated.

Phase II:

Acquire Tritium spectrum. Extract endpoint. Study systematics and backgrounds. Status: Complete! First Tritium spectrum!

Phase III:

(a) "Large Volume" CRES

(b) Atomic tritium production and trapping at high densities

Phase IV:

_arge atomic tritium experiment. Inverted mass ordering reach (40 meV)

THE PROJECT 8 SCIENTIFIC PROGRAMME: A PHASED APPROACH

LARGE VOLUME CRES

- •We need a new CRES technology to reach cubic meter volumes.
 - •Waveguide-centric design no longer suitable
- resonant cavities

•Project 8 has considered and investigated an *antenna array* design significantly in the last few years. A number of challenges identified during R&D have given rise to a new option:

LARGE VOLUME CRES WITH RESONANT CAVITIES

• Electron couples to filtered Tonp mode in Pinches & solenoid cylindrical cavity • Radiation is not lost \Rightarrow large effective volume **Electron** Volume scales with wavelength Improved SNR Small channel count • Challenges: • Ensuring radioactive gas can be injected and removed Understanding signal coupled to cavity modes • 6 GHz Open Cavity Prototype Demonstrate scaling, test strategies for large volume cavity design and readout trapping coils • First prototype: aluminum body, electron gun modular design • Measured S11 of ~40 dB, Q = 3789 for TE011 mode • Cavity CRES Apparatus (CCA): cavity 、 Demonstrate small scale cavity at high frequency (26 GHz) with large SNR • Electron gun source de Viveiros - Penn State

PHENO 2024

- •The irreducible uncertainty on distribution of the ³HeT+ final states after the decay of molecular tritium complicates the extraction of neutrino mass
- Limits all future tritium-based experiments to ~100 meV sensitivity!
- •Switch to Atomic Tritium to improve mass sensitivity: 40 meV!
- •Challenges: How to produce atomic T? How to trap?
- •Design: Cool and trap polarized atomic tritium in loffe magnetic trap

ATOMIC TRITIUM

- Atomic tritium experiment with large (>10 m³) instrumented volume \Rightarrow Target Mass Sensitivity: $m_{\beta} \sim 40$ meV
 - Resolve the inverted ordering case ($m_\beta \gtrsim 50$ meV)

PHASE IV

PHENO 2024

Case Western Reserve University

Johannes Gutenberg University, Mainz

Heidelberg University

Indiana

Karlsruhe Institute of Technology

Lawrence Berkeley **National Laboratory**

Lawrence Livermore **National Laboratory**

Massachusetts Institute of Technology

Pacific Northwest National Laboratory

Pennsylvania State University

University of Illinois

University of Pittsburgh

University of Fexas, Arlington

University of Washington

Yale Yale University

Interested in joining Project 8? We are looking for a Postdoc at Penn State ! Please contact ldeviveiros@psu.edu !

This work is supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all institutions.

THANK YOU!

- **Project 8 has demonstrated the potential of the CRES technique,**
- and charts a promising path towards a direct neutrino mass measurement!

May 2024 v1 # 15

