May 2024 - University of Pittsburgh - DPF-PHENO 2024

RG Improvement of the effective potential in Finite Temperature Quantum Field Theory

Andrija Rasovic University of Toronto Work in progress with David Curtin, Michael Luke and Jyotrimoy Roy

Outline

- **• Finite Temperature QFT - why do we care?**
- **• IR Problem of FTQFT; DR and Resummation**
- **• Optimized Partial Dressing - The** *"Correct"* **way to do resummation**
-
- **• Results**
- **• Outlook and conclusions**

• RG improvement of the scalar potential at $T = 0$ and $T \neq 0$

Cosmological PT

If LISA and future GW detectors detect a signal, could cosmological PT be responsible? What can we learn about dark sectors from such GW signal Ω _{*GW*} ~ T^{-18}

Electro-weak PT and Dark Sector PT

1st order 2nd order/

Increasing *mh*

How does BSM physics modify this picture? Electro-weak Baryogenesis?

Almost any non-minimal DM model could have a phase transition arx: 1407.0688, 1612.00466, 2403.09558, 1702.02117

We need FTQFT framework that is:

1) Theoretically tractable, ie. it is relatively simple to implement new BSM physics into the calculation

2) Stable under theoretical uncertainties (e.g. GW signal strength has strong dependence on the temperature of nucleation of bubbles)

Breakdown of perturbative expansion in FTQFT

$$
2\phi^2 + \frac{\lambda}{4}\phi^4
$$

$$
\left(\frac{\lambda}{\lambda}\right)^2 \sim \lambda T^2
$$

But near T_c , $\alpha \sim 1$, perturbative expansion breaks down. **We need to resum diagrams in the order of highest IR importance!!!**

$$
\frac{1}{m^{2n-1}} \frac{T^{2n+1}}{m} = \lambda^2 \frac{T^3}{m} \left(\lambda \frac{T^2}{m^2} \right)^{2n-1}
$$

$$
\lambda \frac{T^2}{m^2} \ll 1
$$

Arx: 9901312

Calculational methods

Full Dressing Partial Dressing

 $M^2 =$

 $V_{eff}(m^2) =$ $) =$ $\left($ \longrightarrow $V_{eff}(M^2) =$

Dimensional Reduction

Pros:

Easy to do, resums most of the daisy diagrams and super-daisy diagrams. In princple easily applied to BSM models

Cons: Its been shown that it miscounts some daisy and super-daisy diagrams Misses sunset diagrams

Pros: Theoretically robust EFT.

Cons:

Depends on the hierarchy $T \gg m$ and on high-T expansion. Many of the BSM models escape this regime. Very technically involved and not easy to extend to different models.

Pros: Easy to do, resums all of the daisy diagrams and super-daisy diagrams. "Simple" to adapt for any BSM model.

Cons: Misses sunset diagrams

∂*Veff* ∂*ϕ*

=

∂*Veff*

 $\frac{\partial f}{\partial \phi}$ ^{*|_{m2→M2}* =}

Gap Equation

Veff ⁼ [∫] *^d^ϕ*

arx:9204216 9212235

Arx: 9304254

-
- 1) We numerically solve gap equation (we explicitly add sunset diagrams to the potential):

We present OPD as proposed in above papers: **Optimized Partial Dressing Based on arx: 2211.08218 and 1612.00466**

 $V_{OPD} =$ $+$

2) We plug it in V_{OPD}' and integrate wrt. ϕ to obtain potential $M^2 =$ ∂^2 *VOPD* $\partial \phi^2$ $=$ $=$ $-$ + $+$ $($ $)$ + $V_{\text{OPD}} = \int d\phi V'_{\text{OPD}}$ $m^2 \rightarrow M^2$ = $\begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$ + $\begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$ dp

therefore demonstrates that OPD is advantageous for BSM models.

⁺ ⋯

Renormalization group improvement

Renormalization group improvement in zero temperature QFT Let us remind ourselves how the RG improvement works in massless ϕ^4 theory $\,$ 4

We can see that we can capture large log part of the CW potential by plugging above into the potential and set $μ_R² = m²(φ) = 3λφ²$

General statement about RG improvement: Putting solutions of one-loop RG equations into $V_{\mathbf{e}}$ **computed to n-loop fixed order, one should capture behaviour of large logs from n+1-loop fixed order.**

$$
V = \frac{1}{4!} \lambda \phi^4
$$

With $\bar{\lambda}$ solution of RG equation RG:

$$
\bar{\lambda}(\mu) \simeq \lambda(\mu_0) \left(1 + 3 \frac{\lambda(\mu_0)}{32\pi^2} \log \frac{\mu_R^2}{\mu_0^2} \right)
$$

$$
V \sim \lambda \phi^4 + m^4(\phi) \log \left(\frac{m^2(\phi)}{\mu_0^2} \right)
$$

RG improvement of OPD procedure

- Guided by the lesson from tree level procedure, we can do the same in finite temperature. We have our standard MS-bar RG solutions, we put them into the potential, and then set $\mu_R^2 \to M^2(\phi, T) = m^2(\phi) + \delta m^2(\phi, T)$
- It turns out this procedure seemingly greatly reduces the scale dependence of V_{OPD} (in comparison to arx: 2211.08218 for two real scalar theory): $V = -\frac{\mu_1^2}{2}$ $\frac{i_1}{2} \phi_1^2$ $\frac{2}{1} + \frac{\mu_2^2}{2}$ $\frac{1}{2} \phi_2^2$ $\frac{2}{2}$ + *λ*1 1 λ_{2} $^{4}_{2}$ + *λ*12 $^{2}_{1}\phi_{2}^{2}$ 2
- In the case of the two fields, we do the replacement for whatever field has a large thermal mass (in our case it will be the field that does not get VEV)

$$
\frac{\lambda_1}{4} \phi_1^4 \frac{\lambda_2}{4} \phi_2^4 + \frac{\lambda_{12}}{2} \phi_1^2 \phi_2^2
$$

Results

Outlook and conclusions

Final steps

- We are working on analytically proving that indeed replacement effects $μ_R^2 → M^2(φ, T) = m^2(φ) + δm^2(φ, T)$
- Lagrangian parameter μ^2 . *m*2 μ^2
- Can RG improvement be captured by just gap equation?

• Moreover, there is additional ambiguity how exactly one needs to RG improve at finite temperature, as OPD treats m^2 as a parameter, but we only have RGE for

indeed captures all the higher order

Conclusions

• We presented and demonstrated large reduction in scale dependence of the all

- observables
- The OPD framework is much more tractable and easier to do than currently developed methods, especially in comparison to DR.
- in comparison to other methods
- model with phase transitions.

• OPD has been proven to correctly count all the daisy and super-daisy diagrams,

• This work hopes to become the standard for doing calculations for any BSM

Questions?

FTQFT and breakdown of perturbative expansion²⁰

$$
\begin{split}\n\bigcirc \int_{N} = \frac{\lambda}{2} \mathcal{I}[m] & \equiv \frac{\lambda}{2} T \sum_{\omega_n} \int \frac{d^3k}{(2\pi)^3} \frac{1}{K^2 + m^2} \\
\mathcal{I}[m] &= \underbrace{T \int \frac{d^3k}{(2\pi)^3} \frac{1}{\vec{k}^2 + m^2}}_{\mathcal{I}_{\text{soft}}[m]} + \underbrace{T \sum_{n \neq 0} \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_n^2 + \vec{k}^2 + m^2}}_{\mathcal{I}_{\text{hard}}[m]} \\
\mathcal{I}_{\text{daisy}}^{d\text{display}} &\sim \left(T \int \frac{d^3k}{(2\pi)^3} \frac{1}{(\vec{k}^2 + m^2)^N} \right) \left(\lambda T \sum_{n \neq 0} \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_n^2 + \vec{k}^2 + m^2} \right)^N \\
V_N^{\text{daisy}} &\sim \left(m^{3-2N} T \right) \left(\lambda^N T^{2N} \right) = m^3 T \left(\frac{\lambda T^2}{m^2} \right)^N \\
V_{N+1}^{\text{display}} &\quad \lambda T^2\n\end{split}
$$

$$
\begin{split}\n\bigcirc \int_{N} = \frac{\lambda}{2} \mathcal{I}[m] &\equiv \frac{\lambda}{2} T \sum_{\omega_n} \int \frac{d^3k}{(2\pi)^3} \frac{1}{K^2 + m^2} \\
\mathcal{I}[m] &= \underbrace{T \int \frac{d^3k}{(2\pi)^3} \frac{1}{\vec{k}^2 + m^2}}_{\mathcal{I}_{\text{soft}}[m]} + \underbrace{T \sum_{n \neq 0} \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_n^2 + \vec{k}^2 + m^2}}_{\mathcal{I}_{\text{hard}}[m]} \\
V_N^{\text{daisy}} &\sim \left(T \int \frac{d^3k}{(2\pi)^3} \frac{1}{(\vec{k}^2 + m^2)^N} \right) \left(\lambda T \sum_{n \neq 0} \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_n^2 + \vec{k}^2 + m^2} \right)^N \\
V_N^{\text{daisy}} &\sim \left(m^{3-2N} T \right) \left(\lambda^N T^{2N} \right) = m^3 T \left(\frac{\lambda T^2}{m^2} \right)^N . \\
V_{N}^{\text{daisy}} &\sim T^2\n\end{split}
$$

 $\alpha \equiv$

But near T_c , $\alpha \sim 1$, perturbative expansion breaks down.

Taken from arx:2404.12439

$$
\overline{\frac{1}{V_N^{\text{daisy}}}} = \frac{1}{m^2}
$$

