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All accelerometers are automatically 
a B-L DM sensor

What about other DM candidates?

Unfortunately, generic accelerometers are “Neutral” (charge, 
spin, etc.) and insensitive to kinetically mixed dark photons 
and axions.



On the other hand: 
Magnetically Levitated 
(MagLeV) System 
provides best 
acceleration sensitivity…

[Hofer et al., Phys. Rev. Lett. 131, 043603 (2023)]



MagLev

• Magnetic field signal inside experimental apparatus

• Many experiments utilize EM resonances → 𝑓𝐷𝑀 ≥ 𝑘𝐻𝑧 (𝑚𝐷𝑀 ≥ 10−12 𝑒𝑉)

• Can use mechanical resonance for lower frequencies

• Mechanical system + sensitive to magnetic fields → magnetic levitation



Our proposal



Kinetically mixed dark photon

• Two modes: “interacting” 𝐴, “sterile” 𝐴′

• Only  𝐴  couples to charges/currents → observable field

• One massless and one massive state

• 𝐴 and 𝐴′ are not propagation states in vacuum!

• Mixing (and all observable effects) are proportional to 𝑚𝐴′

•  𝐴 and 𝐴′ are propagation states in conductor → mixing at boundary
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Dark-photon effective current

• When  𝐴′  is DM and 𝜖 ≪ 1, then 𝐴′ equivalent to

•Oscillates with frequency 𝜔 = 𝑚𝐴′

•Just a single-photon EM problem with a background current!



Axionlike Particle

• Allows axion to convert into photon in background 𝐵0      

• Trapping field acts as 𝐵0 in our case!

• In non-relativistic limit,

• Also behaves as                                   (replace                                       )

• Note that direction set by 𝐵0 not by DM!



Dark-matter signal

• Dark-photon or axion DM can source EM fields

• When  𝜆𝐷𝑀  larger than apparatus,  𝑬 negligible

• 𝐸|| vanishes at boundary

• Can only grow on 𝜆𝐷𝑀  length scales

• Must be small in the interior

• Dominant signal of ultralight DM is (oscillating) 𝑩 !



Levitated superconductors

• Surface currents screen external magnetic field

• Magnetic field exerts force on currents

• Net restoring force

• Depends on gradient!

• Alternatively, potential for superconductor



Response to DM signal

• Equilibrium position where  𝑩 𝟐 is minimized

• Harmonic oscillator w/ trapping frequency 𝑓0~𝜕𝐵/ 𝜌

• Less dense superconductors are more strongly trapped!

• Time-oscillating  𝑩𝐷𝑀 will vary equilibrium position → oscillatory 
motion

• Resonant enhancement when 𝑚𝐷𝑀 ≈ 2𝜋𝑓0 



Readout

• Can readout with pickup loop connected to SQUID

• Trapping field has flux through pickup loop

• As superconductor moves, flux changes

• Changes in flux measured by SQUID

[Hofer et al., Phys. Rev. Lett. 131, 043603 (2023)]



Noise sources
•  Thermal: kicks from gas molecules

•  Imprecision: flux noise → position

•  Back-action: current noise → force

•  Trade-off based on readout coupling
• Resonant: back-action = thermal

• Broadband: back-action = low-𝑓   
imprecision
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Conclusion

• Levitated superconductors can probe ultralight DM with 𝑚𝐷𝑀 ≤ 10−12 eV

• Superconductor settles at center of quadrupole trap

• Ultralight DM sources magnetic field → perturbs equilibrium

• Resonant and broadband schemes

• Existing setups already comparable to DPDM experiments

• Dedicated setup can be leading laboratory probe of ultralight DM
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