BARYOGENESIS AND GRAVITATIONAL WAVE PRODUCTION IN SIMPLE LEFT-RIGHT MODEL

MATTHEW KNAUSS¹, ARNAB DASGUPTA², MARC SHER¹

¹WILLIAM & MARY, ²UNIVERSITY OF PITTSBURGH

OUTLINE

- I. Motivation
- 2. LR Symmetric Model
- 3. Baryogenesis Overview
- 4. Preliminary Results
- 5. Further work

MOTIVATION

- Standard model cannot explain:
 - Neutrino masses
 - See-saw mechanism
 - Sterile neutrinos
 - Observe baryon asymmetry

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6.2 * 10^{-10}$$

MOTIVATION

- Asymmetry production during phase transitions
 - SM, MSSM, 2HDM, SM+singlet
- Propose this for a simple Left/Right model
- Fermion mass
 - Universal see-saw mechanism
- Use <u>new</u> quantum transport equations

MODEL

- Scalar sector: Add Higgs doublet and scalar singlet
- Introduce a $H_L \leftrightarrow H_R$ and $\sigma \leftrightarrow -\sigma$ symmetry

$$V = -\mu_1^2 \sigma^2 - \mu_2^2 (H_L^{\dagger} H_L + H_R^{\dagger} H_R) + \mu_3 \sigma \left(H_L^{\dagger} H_L - H_R^{\dagger} H_R \right)$$
$$+ \lambda_1 \sigma^4 + \lambda_2 \left[(H_L^{\dagger} H_L)^2 + (H_R^{\dagger} H_R)^2 \right]$$
$$+ \lambda_3 H_L^{\dagger} H_L H_R^{\dagger} H_R + \lambda_4 \sigma^2 \left(H_L^{\dagger} H_L + H_R^{\dagger} H_R \right)$$

MODEL

Particle content

	n_f	$SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_Y$
$q_L = egin{pmatrix} u \ d \end{pmatrix}$	3	(3,2,1,1/6)
$q_R = \begin{pmatrix} \overline{u} \\ \overline{d} \end{pmatrix}$	3	$(\bar{3},\!1,\!2,\!-\!1/6)$
$\ell_L = \begin{pmatrix} u \\ e \end{pmatrix}$	3	(1,2,1,-1/2)
$\ell_R = \begin{pmatrix} \overline{\nu} \\ \overline{e} \end{pmatrix}$	3	(1,1,2,1/2)

U_L	3	(3,1,1,2/3)
U_R	3	$(\bar{3},1,1,-2/3)$
D_L	3	(3,1,1,-1/3)
D_R	3	$(\bar{3},1,1,1/3)$
E_L	3	(1,1,1,-1)
E_R	3	(1,1,1,1)
N_L	3	(1,1,1,0)
N_R	3	(1,1,1,0)
H_L	1	(1,2,1,1/2)
H_R	1	(1,1,2,-1/2)
σ	1	(1,1,1,0)

- Sakaharov Conditions
 - I. Baryon number violation
 - If $B_0 = 0$, need to somehow produce nonzero B
 - 2. C and CP violation
 - Both need to be violated otherwise baryons and antibaryons are produced at the same rate
 - 3. Non-equilibrium conditions
 - Decay and antiparticle decays happen at same rate

- I. Baryon Number Violation
 - B_L+B_R is conserved
 - Asymmetry in right \rightarrow asymmetry in left

- 2. C/CP violation
 - h_L , h_R phase difference
 - Complex Yukawa

- 3. Non-equilibrium conditions
 - First order phase transition

MODEL: PHASE TRANSITIONS

• Ist Transition:

$$(0,0,0) \to (0,0,v_{\sigma})$$

- Second order phase transition
- 2nd Transition: $(0, 0, v_{\sigma}) \rightarrow (0, v_R, v_{\sigma})$
 - Strongly first order phase transition
 - W_R becomes massive
 - Produces lepton asymmetry
 - Produces gravitational waves
- **3**rd Transition: $(0, v_R, v_\sigma) \rightarrow (v_L, v_R, v_\sigma)$
 - Second order phase transition
 - Electroweak phase transition occurs

$$T_c^{\sigma} = \frac{\mu_1^2 - \lambda_1 v_{\sigma}^2}{c_{\sigma}}$$

0

$$T_{c}^{R} = \frac{2\mu_{2}^{2} - \lambda_{2}v_{R}^{2} + 2v_{\sigma}\left(\mu_{3} - \lambda_{4}v_{\sigma}\right)}{2c_{R}}$$

$$T_{c}^{L} = \frac{2\mu_{2}^{2} - \lambda_{2}v_{L}^{2} - \lambda_{3}v_{R}^{2} - 2v_{\sigma}\left(\mu_{3} + \lambda_{4}v_{\sigma}\right)}{2c_{L}}$$

BARYOGENESIS: TRANSPORT EQUATION

- Evolution of particle chemical potentials across bubble wall
- How do we use this to calculate baryon asymmetry?
 - Integrate chemical potential over all space

$$\begin{bmatrix} A_i w'_i + m_i^{2'} B_i w_i = S_i + \delta C_i \end{bmatrix}$$

$$w_i \equiv (\mu_i, u_i)^T \qquad \delta C \equiv (\delta C_1, \delta C_2)$$

$$\delta C_1 \equiv K_0 \sum_i \frac{\Gamma_i}{T} \sum_j s_{ij} \mu_j \qquad \delta C_2 = -\Gamma_{tot} u - v_w \delta C_1$$

TRANSPORT EQUATIONS

$$\begin{aligned} A_{i}w_{i}' + m_{i}^{2'}B_{i}w_{i} &= S_{i} + \delta C_{i} \\ \delta C_{2}^{i} &= -\Gamma_{tot}^{i}u_{i} - v_{w}\delta C_{1}^{i} \\ \delta C_{1}^{t} &= \Gamma_{m_{t}}\left(\mu_{t} - \mu_{\bar{t}}\right) + \Gamma_{W_{L}}\left(\mu_{t} - \mu_{b}\right) + \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{L}}\left[\mu_{i}\right] \\ \delta C_{1}^{\bar{t}} &= \Gamma_{m_{t}}\left(\mu_{\bar{t}} - \mu_{t}\right) + \Gamma_{W_{R}}\left(\mu_{\bar{t}} - \mu_{\bar{b}}\right) - \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{R}}\left[\mu_{i}\right] \\ \delta C_{1}^{b} &= \Gamma_{m_{b}}\left(\mu_{b} - \mu_{\bar{b}}\right) + \Gamma_{W_{L}}\left(\mu_{b} - \mu_{t}\right) + \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{L}}\left[\mu_{i}\right] \\ \delta C_{1}^{\bar{b}} &= \Gamma_{m_{b}}\left(\mu_{\bar{b}} - \mu_{b}\right) + \Gamma_{W_{R}}\left(\mu_{\bar{b}} - \mu_{\bar{t}}\right) - \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{R}}\left[\mu_{i}\right] \\ \delta C_{1}^{h_{L}} &= \Gamma_{h_{L}}\mu_{h_{L}} \\ \end{aligned}$$

TRANSPORT EQUATIONS

 $(M + yv_{\sigma}) T\bar{T}$

MODEL: CONSTRAINTS

- Particles:
 - SM Higgs (125 GeV)
 - W_R mass
 - Using strongest bound (715 GeV)
 - Provides constraint: $v_R > 8.8 v_L$
- Scalar Sector:
 - Boundedness from below
 - Oblique parameters Not major constraint

PRELIMINARY DATA POINTS

	λ_1	λ_2	λ_3	λ_4	$m_H (\text{TeV})$	m_S	M_T	v_R	v_S
BP1	0.12038	1.4	-2.373	0.1832	2	2.5	1.18	2.5	1.1
BP2	0.111	2.869	-5.298	0.183	3	4	1.24	4.2	1

FURTHER WORK

- Parameter scan
- Calculate asymmetry
 - New transport equations
- Calculate gravitational wave signal

THANK YOU!

EXTRA SLIDES

TRANSPORT EQUATIONS

$$\begin{split} A_{t}w'_{t} + m_{t\bar{t}}^{2\prime}B_{t}w_{t} &= S_{t} + \delta C_{t} & \delta C_{1}^{t} = \Gamma_{m_{t}}\left(\mu_{t} - \mu_{\bar{t}}\right) + \Gamma_{W_{L}}\left(\mu_{t} - \mu_{b}\right) + \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{L}}\left[\mu_{i}\right] \\ A_{\bar{t}}w'_{\bar{t}} + m_{t\bar{t}}^{2\prime}B_{\bar{t}}w_{\bar{t}} &= S_{\bar{t}} + \delta C_{\bar{t}} & \delta C_{1}^{\bar{t}} = \Gamma_{m_{t}}\left(\mu_{\bar{t}} - \mu_{t}\right) + \Gamma_{W_{R}}\left(\mu_{\bar{t}} - \mu_{\bar{b}}\right) - \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{R}}\left[\mu_{\bar{t}}\right] \\ A_{b}w'_{b} + m_{b\bar{b}}^{2\prime}B_{b}w_{b} &= S_{b} + \delta C_{b} & \delta C_{1}^{\bar{t}} = \Gamma_{m_{t}}\left(\mu_{b} - \mu_{\bar{b}}\right) + \Gamma_{W_{L}}\left(\mu_{b} - \mu_{t}\right) + \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{L}}\left[\mu_{i}\right] \\ A_{h_{L}}w'_{h_{L}} + m_{h_{L}}^{2\prime}B_{h_{L}}w_{h_{L}} &= S_{h_{L}} + \delta C_{h_{L}} & \delta C_{1}^{\bar{t}} = \Gamma_{m_{b}}\left(\mu_{\bar{b}} - \mu_{b}\right) + \Gamma_{W_{R}}\left(\mu_{\bar{b}} - \mu_{\bar{t}}\right) - \tilde{\Gamma}_{SS}\left[\mu_{i}\right] + \tilde{\Gamma}_{W_{R}}\left[\mu_{i}\right] \\ A_{h_{R}}w'_{h_{R}} + m_{h_{R}}^{2\prime}B_{h_{R}}w_{h_{R}} &= S_{h_{R}} + \delta C_{h_{R}} & \delta C_{1}^{\bar{t}} = \Gamma_{h_{L}}\mu_{h_{L}} \\ \delta C_{1}^{h_{R}} &= \Gamma_{h_{R}}\mu_{h_{R}} & \delta C_{f} = \left(\delta C_{1}^{f}, \delta C_{2}^{f}\right)^{T} \\ \tilde{\Gamma}_{W_{R,L}}\left[\mu_{i}\right] &= \Gamma_{\tilde{W}_{R,L}}\left(\left(1 + 9D_{0}^{\bar{t},t}\right)\mu_{\bar{t},t} + \left(1 + 9D_{0}^{\bar{b},b}\right)\mu_{\bar{b},b}\right) & \delta C_{2}^{i} = -\Gamma_{tot}^{i}u_{i} - v_{w}\delta C_{1}^{i} \\ \tilde{\Gamma}_{SS}\left[\mu_{i}\right] &= \Gamma_{SS}\left(\left(1 + 9D_{0}^{t}\right)\mu_{t} + \left(1 + 9D_{0}^{b}\right)\mu_{b} - \left(1 - 9D_{0}^{\bar{t}}\right)\mu_{\bar{t}}\right) \end{split}$$

	n_f	$SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_Y$
$q_L = \begin{pmatrix} u \\ d \end{pmatrix}$	3	(3,2,1,1/6)
$ \begin{array}{c} q_L = \begin{pmatrix} a \\ d \end{pmatrix} \\ q_R = \begin{pmatrix} \overline{u} \\ \overline{d} \end{pmatrix} \end{array} $	3	$(\bar{3},\!1,\!2,\!-1/6)$
$\ell_L = \begin{pmatrix} \nu \\ e \\ e \end{pmatrix}$ $\ell_R = \begin{pmatrix} \overline{\nu} \\ \overline{e} \\ \overline{e} \end{pmatrix}$	3	(1,2,1,-1/2)
$\ell_R = \begin{pmatrix} \overline{\nu} \\ \overline{e} \end{pmatrix}$	3	(1,1,2,1/2)
U_L	3	(3,1,1,2/3)
U_R	3	$(\bar{3},1,1,-2/3)$
D_L	3	(3,1,1,-1/3)
D_R	3	$(ar{3},\!1,\!1,\!1/3)$
E_L	3	$(1,\!1,\!1,\!-\!1)$
E_R	3	(1,1,1,1)
N_L	3	$(1,\!1,\!1,\!0)$
N_R	3	$(1,\!1,\!1,\!0)$
H_L	1	$(1,\!2,\!1,\!1/2)$
H_R	1	(1, 1, 2, -1/2)
σ	1	(1,1,1,0)

$$\begin{aligned} \lambda_1 &\geq 0\\ \lambda_2 &\geq 0\\ \lambda_2 + \frac{1}{2}\lambda_3 &\geq 0\\ 2\sqrt{\lambda_1\lambda_2} + \lambda_4 &\geq 0\\ (\lambda_2 + \frac{1}{2}\lambda_3)\sqrt{2\lambda_1} + \lambda_4\sqrt{2\lambda_2} + (2\sqrt{\lambda_1\lambda_2} + \lambda_4)\sqrt{(\lambda_2 + \frac{1}{2}\lambda_3)} &\geq 0 \end{aligned}$$

$$\begin{split} m_{u} &= y_{U} \frac{v_{L} v_{R}}{M_{U}} y_{U}^{\dagger} \\ m_{d} &= y_{D} \frac{v_{L} v_{R}}{M_{D}} y_{D}^{\dagger} \\ m_{d} &= y_{D} \frac{v_{L} v_{R}}{M_{D}} y_{D}^{\dagger} \\ m_{l} &= y_{E} \frac{v_{L} v_{R}}{M_{E}} y_{E}^{\dagger} \\ m_{\nu} &= y_{N} \frac{v_{L} v_{R}}{M_{N}} y_{N}^{\dagger} \\ \end{split}$$

$$\begin{split} m_{h}^{2} &= 2 \begin{pmatrix} 2\lambda_{2} v_{L}^{2} & \lambda_{3} v_{L} v_{R} & 2\lambda_{4} v_{L} v_{\sigma} + \lambda_{v} v_{L} \\ \lambda_{3} v_{L} v_{R} & 2\lambda_{2} v_{R}^{2} & 2\lambda_{4} v_{R} v_{\sigma} - \lambda_{v} v_{R} \\ 2\lambda_{4} v_{L} v_{\sigma} + \lambda_{v} v_{L} & 2\lambda_{4} v_{R} v_{\sigma} - \lambda_{v} (\frac{v_{L}^{2} - v_{R}^{2}}{2v_{\sigma}}) \end{pmatrix} \\ &= \mathcal{O}.m_{D}.\mathcal{O}^{T} \\ m_{D} &= \begin{pmatrix} m_{Higgs}^{2} & 0 & 0 \\ 0 & m_{H_{R}}^{2} & 0 \\ 0 & 0 & m_{\sigma}^{2} \end{pmatrix}; \quad \mathcal{O} = \begin{pmatrix} c_{12}c_{13} & -c_{13}s_{12} & s_{13} \\ c_{23}s_{12} - c_{12}s_{13}s_{23} & c_{12}c_{23} + s_{12}s_{13}s_{23} & c_{13}s_{23} \\ -c_{12}c_{23}s_{13} - s_{12}s_{23} & c_{23}s_{12}s_{13} - c_{12}s_{23} & c_{13}c_{23} \end{pmatrix}$$

 $\mathcal{L}_Y = -y_D(\bar{q}_L H_L D_R + \bar{q}_R H_R D_L) - M_D \bar{D}_L D_R$ $-y_U(\bar{q}_L \tilde{H}_L U_R + \bar{q}_R \tilde{H}_R U_L) - M_U \bar{U}_L U_R$ $-y_E(\bar{\ell}_L H_L E_R + \bar{\ell}_R H_R E_L) - M_E \bar{E}_L E_R$ $-y_N(\bar{\ell}_L \tilde{H}_L E_R + \bar{\ell}_R \tilde{H}_R E_L) - M_N \bar{N}_L N_R$