Reactor $\bar{\nu}$ Flux from $\bar{\nu} - 13C$ NC Interactions

Min-Gwa Park

Work with Pouya Bakhti, Meshkat Rajaee, Seodong Shin, Chang Sub Shin [arXiv : 2405.xxxxx]

> DPF-PHENO 2024 University of Pittsburgh / Carnegie Mellon University May 14, 2024

C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, Phys.Lett.B 829 (2022) 137054

Overall Deficit of Measured $\bar{\nu}_e$ Flux 2011 : Mention et al. Reactor Antineutrino Anomaly

Nuclear Physics Explanations

C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, Phys.Lett.B 829 (2022) 137054

More conservative and promising, but still more ways to go

C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, Phys.Lett.B 829 (2022) 137054

Overall Deficit of Measured $\bar{\nu}_e$ Flux 2011 : Mention et al.

Reactor Antineutrino Anomaly

Channel for Reactor $\bar{\nu}_e$

Xin Qian and Jen-Chieh Peng 2019 Rep. Prog. Phys. 82 036201

- Large cross section
- Detection of final state e^+ , $n \rightarrow \text{can reconstruct } E_{\nu}$
- Double coincidence signal
- Main detection channel for reactor \bar{v}_e

Where does 5 MeV Bump come from? Reactor $\overline{\nu}_e$ flux models? New Physics? IBD-related systematics?

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

Additional Channel for Reactor $\bar{\nu}_e$?

Xin Qian and Jen-Chieh Peng 2019 Rep. Prog. Phys. 82 036201

Channel	Name	Cross Section (10^{-44} cm ² /fission)	Threshold (MeV)
$\overline{ u}_e + p ightarrow e^+ + n$	IBD	63	1.8

• Flavor neutral

 $\overline{\nu}_{lpha} + 13C
ightarrow \overline{\nu}_{lpha} + 13C^*$

- $\sim 4.5 \times 10^{26}$ in 1 t LS
- Accessible to solar & reactor neutrinos

v-13C NC

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

3.685

0.65

Additional Channel for Reactor $\bar{\nu}_e$?

Xin Qian and Jen-Chieh Peng 2019 Rep. Prog. Phys. 82 036201

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

Vogel, P., Wen, L. & Zhang, C. Nat Commun 6, 6935 (2015).

IBD

- Much larger cross section
- Detection of final state e^+
- Double coincidence signal
- Main detection channel for reactor $\bar{\nu}_{e}$ ۲

$\nu - 13C$ NC

- Flavor neutral
- Accessible to solar & reactor neutrinos
- Complementary channel to IBD

9

- Much larger cross section
- Detection of final state e^+
- Double coincidence signal
- Main detection channel for reactor $\bar{\nu_e}$

Flux Model Comparison

To reach 1σ model separation with ν -13C NC signals, at least 4 - 8% sensitivity is required.

Assumptions on Backgrounds

ROI = $3.685 \pm 0.1 \, MeV$ (FWHM for 5% / $\sqrt{E(MeV)}$ resolution)

J. M. Conrad, J. M. Link, and M. H. Shaevitz, Phys. Rev. D 71, 073013 \rightarrow on reactor $\bar{\nu}$ single-flash ES signals in 3~5 MeV

Backgrounds for the single-flash 3.685 MeV gamma

After 99.9% rejection with additional fiducial volume cut

- ES + mis-IBD : ~6 times of signals -> helped by β/γ discrimination (PID)

- Internal radiation (208Tl decay) -> high purity of LS + 232Th tagging
- Cosmic muon spallation -> overburden (300m.w.e.), muon veto, fiducial volume cut
- External radiation -> fiducial volume cut

- Solar
$$\nu$$
 events : if $\frac{Power(GW)}{(Baseline(km))^2} \ll 1$

Reactor $\bar{\nu}NC \approx 22 \times \frac{Power(GW) \cdot kt \cdot year}{(Baseline(km))^2}$ Solar $\nu NC \approx 15 \ kt \cdot year$

 \hookrightarrow JUNO : Solar ν -13C detector

[/] active year

Flux Model Comparison

For simplicity, we adopt the three background scenarios:

For simplicity, assumed unit signal acceptance

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

18

550

/year

720

900

After 1.5 years data taking of RENO+, we can reach 4% sensitivity

For simplicity, assumed unit signal acceptance

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14. 19

Chooz+

1850

We can also observe fuel evolutions with ν -13C NC signals.

Considering background and 3% (1%) systematics, we can **discriminate models** at

HKSS/KI : 4.5σ (6σ) HKSS/HM : 2σ (2.5σ)

If we can combine IBD and $\overline{\nu}$ -13C neutral current interactions, we can be more accessible to investigate the contribution of the different isotopes to the 5 MeV bump (Reactor flux modeling, New Physics...)

$\bar{\nu}$ -13C NC interactions can

- be complementary channel to IBD.
- achieve sensitivity to **distinguish reactor models**
 - with realizable background reduction techniques (PID, LS purity, overburden).
- observe fuel evolution and help understanding the contribution of each isotopes.
- be a tool to identifying the origin of the **5 MeV bump**

Thank You!

Back up

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14. 2

23

Particle Physics Explanations for Reactor Anomalies

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

24

NO-NG SSM SNO J. Arafune, M. Fukugita, Y. Kohyama, K. Kubodera, Physics Letters B, Volume 217, Issues 1–2, 1989. J. Zhao *et al*, 2024 *ApJ* 965 122 ← **JUNO** NC Expected events in 10 yrs after cuts 1500 —Total ---w/o NC ES 10³ 1000 3.5 4.5 4 ES + NC10² Ē –Total v.-13C CC v-e ES ES + NC + CCv-13C NC 10 Ē Reactor ES+NC Radioactivity & Isotopes -10% 10% 0 2 10 12 16 6 8 14 18 20 Relative ⁸*B* flux uncertainty Visible energy [MeV]

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14. 25

13C as a Solar v Detector

A. Ianni, D. Montanino, F.L. Villante, Physics Letters B, Volume 627, Issues 1-4, 2005.

 $\Phi_{^8B} = 5.25 \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$

v-13C Neutral Current Cross Section

M. Fukugita, Y. Kohyama, K. Kubodera, and T. Kuramoto, Phys. Rev. C 41, 1359 (1990) M. Pourkaviani and S. L. Mintz, J. Phys. G G 17, 1139 (1991) S. L. Mintz, Nucl. Phys. A 672, 503 (2000). T. Suzuki, A. B. Balantekin, and T. Kajino, Phys. Rev. C 86, 015502 (2012). $\sigma = [a_1(E_{\nu} - Q) + a_2(E_{\nu} - Q)^2 + a_3(E_{\nu} - Q)^3] \times 10^{-44} \ cm^2$

 $13C(\bar{\nu},\bar{\nu}') 13C^*$

	$\frac{\text{State}}{1/2^+}$	$E_x ({ m MeV})$ 3.089	$a_1 \ ({\rm MeV}^{-1})$ 6.80×10^{-3}	$a_2 \ ({ m MeV}^{-2})$ $8.80 imes 10^{-4}$	$\frac{a_3 \; (\text{MeV}^{-3})}{4.00 \times 10^{-4}}$
	$3/2^{-}$	3.685	0.122	1.26	0
	$5/2^{+}$	3.854	$9.83 imes 10^{-3}$	-3.38×10^{-3}	4.54×10^{-4}
	$5/2^-$	7.547	0.596	-0.56	0.1
13C (v,	v') 130	○ *			

3/2-	3.685	0.123	1.28	7.56×10^{-3}

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 26 2024. 5. 14.

v-13C Neutral Current Cross Section

B. R. Barrett, P. Navratil, and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013). ← Ab initio no core shell model calculation J. Zhao *et al*, 2024 *ApJ* 965 122 ← JUNO

J. Alonso et al. – Neutrino Physics Opportunities with the IsoDAR Source at Yemilab (2111.09480) ← IsoDAR

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

In 8~10 MeV region, we assumed extrapolated HM for HKSS and KI.

Inclusion of 8~10 MeV region did not change event rate ratios between flux models much.

Assumptions on Backgrounds

J. M. Conrad, J. M. Link, and M. H. Shaevitz, Phys. Rev. D 71, 073013 ← Backgrounds are scaled from here

Assumption

: ~ 300 m.w.e. overburden, 5×10^{-17} g/g 232Th contamination

 \rightarrow

 \sim 540 times IBD and \sim 5.5 times ES to 13C NC signals,

1 208Tl events / kt·day, 5 spallation events / kt·day

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

29

@JUNO

Particle Identification

LiquidO Consortium. Neutrino physics with an opaque detector. Commun Phys 4, 273 (2021).

Min-Gwa Park | Reactor antineutrino flux from antineutrino -13C NC interaction | DPFPHENO 2024 2024. 5. 14.

