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The Effective Potential

• The effective potential origins: how do radiative corrections modify spontaneous symmetry 
breaking?

• Defined as the generating function of single particle irreducible Green’s functions at zero 
momentum transfer.

• Useful in understanding phase transitions in quantum field theories.

• While originally computed using Feynman diagrams or functional methods, Symanzik (1970) 
gave a more expedient and intuitive Hamiltonian derivation (for zero temperature):

Volume Coherent State
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The Effective Potential—Static Case

• Consider a real scalar field Hamiltonian:

• With the following conditions:
• Therefore, the field is in a coherent state/condensate.

• Decompose into “classical”/mean field and fluctuation:

Spacetime constant 
mean field Quantum Fluctuation
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The Effective Potential—Static Case

• Inserting into the Hamiltonian and expanding in 𝛿, one readily obtains the effective potential:

• Where the fluctuation itself behaves as a free real scalar field with mass:
• Note this mass is time-independent since the mean field/classical field is constant.

• Solving the equations of motion for the fluctuation simplifies the expression:

• Takeaways:
1. The Hamiltonian approach works to extract the effective potential.
2. The usual effective potential is a static quantity.

• This is the familiar one-loop effective 
potential.

• UV divergences handled by 
straightforward renormalization of 
parameters in the “classical” potential.
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The E ective Potential—Dynamical Case

• Increasingly, phenomenologists have used the effective potential to describe the time 
evolution of the expectation values of homogeneous fields.

• The idea is to use the equation of motion:

• But is this ultimately justified? 

• Consider the same Hamiltonian but with conditions:

Time-varying mean field
Quantum Fluctuation
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The Effective Potential—Dynamical Case

• Inserting into the Hamiltonian one obtains the energy density:

• Where the one-loop fluctuation energy density:

• The non-trivial time-dependence of 𝜑(𝑡) means the fluctuation essentially has a time-dependent mass!

• The best one can do is express the result in terms of the mode functions of the fluctuation which satisfy:

• Kinetic
• Classical Potential
• Fluctuation
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Quasi-static/Adiabatic Approximation

• Often the dynamical situations of interest consider a slow evolution of the mean field.

• WKB Ansatz:

• Adiabatic Expansion: 

• Insert into energy density; define the adiabatic effective potential (up to 2nd order adiabatic):

usual 1-loop effective potential 2nd order adiabatic correction
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Energy Conservation and Equation of Motion

• Energy is conserved for fields in Minkowski spacetime.

• Differentiating the energy density, one obtains the true equation of motion for the “classical” 
field:

• Compare with the effective potential inspired equation:

• Discrepancy:

• Takeaways:  
1. Beyond zeroth adiabatic order, the equation of motion does NOT go with the effective potential!
2. Insisting on using the effective potential entails violation of energy conservation! 12
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How bad is this discrepancy really?

• Consider a simple tree level potential:
• Where 𝑚 > 0

• In this case the discrepancy becomes:

Large Amplitude Limit:
• Discrepancy seems 

perturbatively small.

• But for long wavelengths 
adiabaticity is violated!

�̈� (𝑡)

𝜔 (𝑡)
≃

�̈� 𝑡

3𝜆𝜑
≃ ℴ(1)

Small Amplitude Limit:
• Discrepancy again seems 

perturbatively small.

• However, the classical potential 
will be mass dominated and 
feature oscillations around 𝜑 = 0.

• This leads to parametric 
resonance! 15
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Parametric 
Resonances
• Consider mean field 

oscillations around minimum.

• Floquet’s Theory shows
solutions have form:

• The Floquet index, 𝜈 , becomes 
complex for certain ranges 
wavevectors → unstable modes!

Mode Function ODE → Mathieu’s Equa on
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Parametric 
Resonances
• Unstable modes correspond to

bands of wavevectors.

• These bands narrow with
• Small coupling
• Small mean field amplitude
• Large mass

• Adiabatic modes are bounded in 
time. Unstable (growing) modes 
represent adiabatic breakdown! 

Unstable Bands in the 𝜅 − 𝛼 Plane
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What do these instabilities represent?

• Energy is conserved, so these instabilities represent a “draining of energy” from “classical” 
energy density to the fluctuation term.

• This accumulation of energy in the fluctuation term can be viewed as a spontaneous 
production of adiabatic particles.

• Can be shown via a time-dependent Bogoliubov transformation.
• Asymptotically a stationary state fixed point should obtain.

• Note other sources of instability are possible. Recall:
• Spinodal Instability: If 𝑉 𝜑 𝑡 < 0,→ 𝜔 𝑡 < 0 (for 𝑘 < |𝑉′′(𝜑)|)
• Imaginary frequencies possible when above the inflection point of the classical potential → unstable modes!
• Example: This will occur for potentials with spontaneous symmetry breaking

• Kinetic
• Classical Potential
• Fluctuation
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Conclusions

• The usual effective potential does not correctly capture the dynamics of a dynamical mean field.

• Extending the effective potential concept to these situations via a quasi-static/adiabatic
approximation to be implemented in the equations of motion is highly dubious:

• Energy conservation is violated.
• Adiabaticity is easily violated: 1.) Long wavelength modes, 2.) Instabilities

• In particular, both parametric resonance and spinodal instabilities can be viewed through lens of 
particle production.

• How to properly handle the dynamical case? Use true energy-conserving equations of motion:

• Closed set of equations.

• Can renormalize away UV divergences.

• Can be solved numerically via
appropriate initial conditions on
𝜑, �̇�, 𝑔 , �̇� 21
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