

Anomalies in Hadronic B Decays [2311.18011]

An analysis of $SU(3)_F$ in the $B \rightarrow PP$ system $(P = \{\pi, K\})$

May 16th 2024

Alexandre Jean (M.Sc. Candidate) Supervised by: Prof. David London Outline

16 decays $B \rightarrow PP$ where $B = \{B^+, B^0, B_s^0\}, P = \{\pi, K\}$

SU(3)_F symmetry Diagrams Data

➢Fit results

$$\Delta S = 0$$

$$B^{+} \rightarrow \overline{K^{0}}K^{+}$$

$$B^{+} \rightarrow \pi^{0}\pi^{+}$$

$$B^{0} \rightarrow K^{0}\overline{K^{0}}$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}$$

$$B^{0} \rightarrow \pi^{0}\pi^{0}$$

$$B^{0} \rightarrow K^{+}K^{-}$$

$$B^{0}_{s} \rightarrow \pi^{+}K^{-}$$

$$B^{0}_{s} \rightarrow \pi^{0}\overline{K^{0}}$$

$$\Delta s = 1$$

$$B^{+} \rightarrow \pi^{+} K^{0}$$

$$B^{+} \rightarrow \pi^{0} K^{+}$$

$$B^{0} \rightarrow \pi^{-} K^{+}$$

$$B^{0} \rightarrow \pi^{0} K^{0}$$

$$B^{0}_{S} \rightarrow K^{+} K^{-}$$

$$B^{0}_{S} \rightarrow K^{0} \overline{K^{0}}$$

$$B^{0}_{S} \rightarrow \pi^{+} \pi^{-}$$

$$B^{0}_{S} \rightarrow \pi^{0} \pi^{0}$$

Introduction

- ➤ We are interested in:
 - $\succ b$ quark
 - > Three lightest quarks $(SU(3)_F)$
 - Electroweak interaction

Standard Model of Elementary Particles

https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles_edit.svg

 $SU(3)_F$

 $P = \{\pi, K\}$

https://en.wikipedia.org/wiki/Meson#/media/File:Meson_nonet_-_spin_0.svg

 $SU(3)_F$

 $P = \{\pi, K\}$

https://en.wikipedia.org/wiki/Meson#/media/File:Meson_nonet_-_spin_0.svg

CKM Matrix

$$V_{CKM} = {}^{u}_{t} egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \ -|V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-ieta} & -|V_{ts}|e^{-ieta_{s}} & |V_{tb}| \end{pmatrix}$$

$$\sum_{j} V_{ij} V_{kj}^* = \delta_{ik} + \mathcal{O}(\lambda^4)$$

CKM Matrix

$$\sum_{j} V_{ij} V_{kj}^* = \delta_{ik} + \mathcal{O}(\lambda^4)$$

Diagrams

- Used to express the amplitudes
- Rigorous group theoretical objects
- > Allow for a 'physical' interpretation $E_{E_{i}}$

[arXiv: <u>9504326, 9504327</u>]

Branching ratio

Direct CP asymmetry

Indirect CP asymmetry

$$B^{0}_{(s)} \longrightarrow f_{CP}$$

$$\bigwedge \underbrace{f_{CP}}_{B^{0}_{(s)}}$$

 $15 \Delta s = 0$ observables $15 \Delta s = 1$ observables

13 theoretical parameters

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}
$B^+ \to K^+ \overline{K}^0$	$1.31{\pm}0.14$	$0.04{\pm}0.14^{\dagger}$	
$B^+ \to \pi^+ \pi^0$	$5.59{\pm}0.31$	$0.008 {\pm} 0.035$	
$B^0 \to K^0 \overline{K}^0$	$1.21{\pm}0.16^\dagger$	$0.06{\pm}0.26$	$-1.08{\pm}0.49$
$B^0 \to \pi^+ \pi^-$	$5.15{\pm}0.19$	0.311 ± 0.030	-0.666 ± 0.029
$B^0 o \pi^0 \pi^0$	1.55 ± 0.16	$0.30{\pm}0.20$	
$B^0 \to K^+ K^-$	$0.080 {\pm} 0.015$		
$B_s^0 \to \pi^+ K^-$	$5.90\substack{+0.87 \\ -0.76}$	$0.225{\pm}0.012$	
$B_s^0 o \pi^0 \overline{K}^0$			

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}	
$B^+ \to \pi^+ K^0$	$23.52{\pm}0.72$	$-0.016{\pm}0.015$		
$B^+ \to \pi^0 K^+$	$13.20{\pm}0.46$	$0.029{\pm}0.012$		
$B^0 \to \pi^- K^+$	$19.46 {\pm} 0.46$	$-0.0836{\pm}0.0032$		
$B^0 o \pi^0 K^0$	$10.06 {\pm} 0.43$	$-0.01{\pm}0.13$	$-0.58{\pm}0.17^\dagger$	
$B_s^0 \to K^+ K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	$0.14{\pm}0.03$	
$B_s^0 \to K^0 \overline{K}^0$	17.4 ± 3.1			
$B_s^0 \to \pi^+ \pi^-$	$0.72\substack{+0.11 \\ -0.10}$			
$B_s^0 ightarrow \pi^0 \pi^0$	$2.8{\pm}2.8^*$			

Branching ratio

Direct CP asymmetry

Indirect CP asymmetry

$$B^{0}_{(s)} \longrightarrow f_{CP}$$

$$\bigwedge \underbrace{f_{CP}}_{B^{0}_{(s)}}$$

 $15 \Delta s = 0$ observables $15 \Delta s = 1$ observables

13 theoretical parameters

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}
$B^+ \to K^+ \overline{K}^0$	$1.31{\pm}0.14$	$0.04{\pm}0.14^{\dagger}$	
$B^+ \to \pi^+ \pi^0$	$5.59{\pm}0.31$	$0.008 {\pm} 0.035$	
$B^0 \to K^0 \overline{K}^0$	$1.21{\pm}0.16^\dagger$	$0.06{\pm}0.26$	$-1.08{\pm}0.49$
$B^0 \to \pi^+ \pi^-$	$5.15{\pm}0.19$	0.311 ± 0.030	-0.666 ± 0.029
$B^0 \to \pi^0 \pi^0$	$1.55{\pm}~0.16$	$0.30{\pm}0.20$	
$B^0 \to K^+ K^-$	$0.080 {\pm} 0.015$		
$B_s^0 \to \pi^+ K^-$	$5.90\substack{+0.87 \\ -0.76}$	$0.225{\pm}0.012$	
$B_s^0 o \pi^0 \overline{K}^0$			

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}
$B^+ \to \pi^+ K^0$	$23.52{\pm}0.72$	$-0.016 {\pm} 0.015$	
$B^+ \to \pi^0 K^+$	$13.20 {\pm} 0.46$	$0.029{\pm}0.012$	
$B^0 \to \pi^- K^+$	$19.46 {\pm} 0.46$	$-0.0836{\pm}0.0032$	
$B^0 \to \pi^0 K^0$	$10.06{\pm}0.43$	$-0.01{\pm}0.13$	$-0.58{\pm}0.17^\dagger$
$B_s^0 \to K^+ K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	$0.14{\pm}0.03$
$B_s^0 \to K^0 \overline{K}^0$	$17.4 {\pm} 3.1$		
$B_s^0 \to \pi^+ \pi^-$	$0.72\substack{+0.11 \\ -0.10}$		
$B_s^0 o \pi^0 \pi^0$	$2.8{\pm}2.8^*$		

Branching ratio

Direct CP asymmetry

Indirect CP asymmetry

$$B^{0}_{(s)} \longrightarrow f_{CP}$$

$$\bigwedge \underbrace{\int_{B^{0}_{(s)}} f_{CP}}_{B^{0}_{(s)}}$$

 $15 \Delta s = 0$ observables $15 \Delta s = 1$ observables

13 theoretical parameters

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}	
$B^+ \to K^+ \overline{K}^0$	$1.31{\pm}0.14$	$0.04{\pm}0.14^{\dagger}$		
$B^+ \to \pi^+ \pi^0$	$5.59{\pm}0.31$	$0.008 {\pm} 0.035$		
$B^0 \to K^0 \overline{K}^0$	$1.21{\pm}0.16^\dagger$	$0.06{\pm}0.26$	$-1.08{\pm}0.49$	
$B^0 \to \pi^+ \pi^-$	$5.15 {\pm} 0.19$	$0.311{\pm}~0.030$	$-0.666 {\pm} \ 0.029$	
$B^0 o \pi^0 \pi^0$	$1.55{\pm}~0.16$	$0.30{\pm}0.20$		
$B^0 \to K^+ K^-$	$0.080{\pm}0.015$			
$B_s^0 \to \pi^+ K^-$	$5.90\substack{+0.87 \\ -0.76}$	$0.225{\pm}0.012$		
$B_s^0 o \pi^0 \overline{K}^0$				

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}	
$B^+ \to \pi^+ K^0$	$23.52{\pm}0.72$	$-0.016 {\pm} 0.015$		
$B^+ \to \pi^0 K^+$	$13.20{\pm}0.46$	$0.029{\pm}0.012$		
$B^0 \to \pi^- K^+$	$19.46 {\pm} 0.46$	$-0.0836{\pm}0.0032$		
$B^0 \to \pi^0 K^0$	$10.06 {\pm} 0.43$	$-0.01{\pm}0.13$	$-0.58{\pm}0.17^\dagger$	
$B_s^0 \to K^+ K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	$0.14{\pm}0.03$	
$B_s^0 \to K^0 \overline{K}^0$	17.4 ± 3.1			
$B_s^0 \to \pi^+ \pi^-$	$0.72\substack{+0.11 \\ -0.10}$			
$B_s^0 o \pi^0 \pi^0$	$2.8{\pm}2.8^*$			

Branching ratio

Direct CP asymmetry

Indirect CP asymmetry

$$B^{0}_{(s)} \longrightarrow f_{CP}$$

$$\bigwedge \underbrace{f_{CP}}_{B^{0}_{(s)}}$$

 $15 \Delta s = 0$ observables $15 \Delta s = 1$ observables

13 theoretical parameters

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}
$B^+ \to K^+ \overline{K}^0$	$1.31{\pm}0.14$	$0.04{\pm}0.14^{\dagger}$	
$B^+ \to \pi^+ \pi^0$	$5.59{\pm}0.31$	$0.008 {\pm} 0.035$	
$B^0 \to K^0 \overline{K}^0$	$1.21{\pm}0.16^\dagger$	$0.06{\pm}0.26$	$-1.08{\pm}0.49$
$B^0 \to \pi^+ \pi^-$	$5.15{\pm}0.19$	$0.311 \pm\ 0.030$	-0.666 ± 0.029
$B^0 o \pi^0 \pi^0$	1.55 ± 0.16	$0.30{\pm}0.20$	
$B^0 \to K^+ K^-$	$0.080 {\pm} 0.015$		
$B_s^0 \to \pi^+ K^-$	$5.90\substack{+0.87 \\ -0.76}$	$0.225{\pm}0.012$	
$B_s^0 \to \pi^0 \overline{K}^0$			

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A_{CP}	S_{CP}
$B^+ \to \pi^+ K^0$	$23.52{\pm}0.72$	$-0.016 {\pm} 0.015$	
$B^+ \to \pi^0 K^+$	$13.20 {\pm} 0.46$	$0.029{\pm}0.012$	
$B^0 \to \pi^- K^+$	$19.46 {\pm} 0.46$	$-0.0836{\pm}0.0032$	
$B^0 o \pi^0 K^0$	$10.06 {\pm} 0.43$	$-0.01{\pm}0.13$	$-0.58{\pm}0.17^\dagger$
$B_s^0 \to K^+ K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	$0.14{\pm}0.03$
$B_s^0 o K^0 \overline{K}^0$	17.4 ± 3.1		
$B_s^0 \to \pi^+ \pi^-$	$0.72\substack{+0.11 \\ -0.10}$		
$B_s^0 ightarrow \pi^0 \pi^0$	$2.8{\pm}2.8^*$		

Fits

➢ 15 observables

> 13 parameters

➤ 2 degrees of freedom

Both fits are good

 $\Delta s = 0$ $\Delta s = 1$

$$\frac{\chi^2_{min}}{d.o.f} = 0.35/2$$

$$\frac{\chi^2_{min}}{d.o.f} = 1.8/2$$

p-value of 0.84 p-value of 0.40 0.20σ 0.84σ

Complete $SU(3)_F$ fit

$$SU(3)_F$$

$$\frac{\chi^2_{min}}{d.o.f} = 43.8/17$$

p-value of 3.6×10^{-4}

3.6σ

$SU(3)_F$ breaking

A 0	$ ilde{T} $	$ ilde{C} $	$ \widetilde{P_{uc}} $	$ \tilde{A} $	$\left \widetilde{PA_{uc}}\right $	$\left \widetilde{P_{tc}}\right $	$ \widetilde{PA_{tc}} $
$\Delta s = 0$	4.0 ± 0.5	6.6 ± 0.7	$ \tilde{P}_{uc} $ $ \tilde{A} $ $ \tilde{P}A_{uc} $ $ \tilde{P}_{tc} $ $ \tilde{A} $ 0.7 3 ± 4 6 ± 5 0.7 ± 0.8 0.8 ± 0.4 0.2 $ \tilde{P}_{uc}' $ $ \tilde{A'} $ $ \tilde{P}A_{uc}' $ $ \tilde{P}_{tc}' $ $ \tilde{A} $ $ \tilde{P}_{uc}' $ $ \tilde{A'} $ $ \tilde{P}A_{uc}' $ $ \tilde{P}_{tc}' $ $ \tilde{A} $ $ 4$ 48 ± 14 84 ± 28 7 ± 4 0.76 ± 0.16 0.24	0.2 ± 0.4			
$\Lambda c = 1$	$\left \widetilde{T'}\right $	$\left \widetilde{C'}\right $	$ \widetilde{P_{uc}'} $	$\left \widetilde{A'}\right $	$\left \widetilde{PA_{uc}'}\right $	$\left \widetilde{P_{tc}'}\right $	$\left \widetilde{PA_{tc}'}\right $
$\Delta 3 = 1$	49 <u>+</u> 13	42 ± 14	48 ± 14	84 <u>+</u> 28	7 <u>±</u> 4	0.76 ± 0.16	0.24 ± 0.04

$\left \frac{D'}{D}\right $	$\frac{\left \widetilde{T'} \right }{\widetilde{T}}$	$\frac{\widetilde{C'}}{\widetilde{C}}$	$\frac{ \widetilde{P'_{uc}} }{ \widetilde{P_{uc}} }$	$\left rac{\widetilde{A'}}{\widetilde{A}} ight $	$\frac{\widetilde{PA'_{uc}}}{\widetilde{PA_{uc}}}$	$\frac{\left \frac{\widetilde{P_{tc}'}}{\widetilde{P_{tc}}}\right }{\left \widetilde{P_{tc}}\right }$	$\frac{\widetilde{PA_{tc}'}}{\widetilde{PA_{tc}}}$
	12.3 ± 3.6	6.4 ± 2.2	16 <u>+</u> 22	14 <u>+</u> 13	10 <u>+</u> 13	0.95 ± 0.52	1.2 ± 2.4

$$\frac{f_K}{f_\pi} - 1 = \sim 20\%$$

$SU(3)_F$ breaking

A = 0	$ ilde{T} $	$ ilde{C} $	$ \widetilde{P_{uc}} $	$ \tilde{A} $	$\left \widetilde{PA_{uc}}\right $	$ \widetilde{P_{tc}} $	$ \widetilde{PA_{tc}} $
$\Delta s = 0$	4.0 ± 0.5	6.6 ± 0.7	3 ± 4	6 <u>±</u> 5	0.7 ± 0.8	0.8 ± 0.4	0.2 ± 0.4
$\Lambda c = 1$	$\left \widetilde{T'}\right $	$\left \widetilde{C'}\right $	$ \widetilde{P_{uc}'} $	$\left \widetilde{A'}\right $	$\left \widetilde{PA_{uc}'}\right $	$\left \widetilde{P_{tc}'}\right $	$\left \widetilde{PA_{tc}'}\right $
$\Delta 3 = 1$	49 <u>+</u> 13	42 ± 14	48 ± 14	84 <u>+</u> 28	7 <u>±</u> 4	0.76 ± 0.16	0.24 ± 0.04

$\left \frac{D'}{D}\right $	$\left \frac{\widetilde{T'}}{\widetilde{T}} \right $	$\frac{\widetilde{C'}}{\widetilde{C}}$	$\frac{\widetilde{P'_{uc}}}{\widetilde{P_{uc}}}$	$\left rac{\widetilde{A'}}{\widetilde{A}} ight $	$\frac{\widetilde{PA'_{uc}}}{\widetilde{PA_{uc}}}$	$\frac{ \widetilde{P_{tc}'} }{ \widetilde{P_{tc}} }$	$\frac{\widetilde{PA_{tc}'}}{\widetilde{PA_{tc}}}$
	12.3 ± 3.6	6.4 ± 2.2	16 <u>+</u> 22	14 <u>+</u> 13	10 ± 13	0.95 ± 0.52	1.2 ± 2.4

Naively we expect
$$\left|\frac{C}{T}\right| = \frac{1}{3}$$

QCD factorization
$$\rightarrow \left|\frac{C}{T}\right| \approx 0.2$$

Naively we expect
$$\left|\frac{C}{T}\right| = \frac{1}{3}$$

QCD factorization
$$\rightarrow \left|\frac{C}{T}\right| \approx 0.2$$

Fits when imposing $\left|\frac{C}{T}\right| = 0.2$

Conclusion

- \succ Poor fit with the data
- High symmetry breaking required

>New physics?

$$\Delta s = 0 \qquad \frac{\chi^2_{min}}{d. o. f} = 0.35/2 \qquad \longrightarrow \qquad \frac{\chi^2_{min}}{d. o. f.} = 18.8/3$$

$$\Delta s = 1 \qquad \frac{\chi^2_{min}}{d. o. f} = 1.8/2 \qquad \longrightarrow \qquad \frac{\chi^2_{min}}{d. o. f.} = 6.3/3$$

$$SU(3)_F \qquad \frac{\chi^2_{min}}{d. o. f} = 43.8/17 \qquad \longrightarrow \qquad \frac{\chi^2_{min}}{d. o. f.} = 55.5/18$$

Thank you!

Supplemental material

Weak Phase Mixing

Tagging of
$$B_{(s)}^0 - \overline{B_{(s)}^0}$$

 -2β phase

Wigner-Eckart Theorem

The Wigner-Eckart theorem contains 3 parts

The transition

The reduced matrix element

The Clebsch-Gordan coefficient

$$\left\langle j,m\left|T_{Q}^{(K)}\right|j',m'\right\rangle = \left\langle j\left|\left|T^{(K)}\right|\right|j'\right\rangle \langle K,j';Q,m'|j,m\rangle$$

$$\left\langle G, Y, I, I_3 \left| T_{Y'', I'', I_3''}^{(G'')} \right| G', Y', I', I_3' \right\rangle = \left\langle G \left| \left| T^{G''} \right| \right| G' \right\rangle \left\langle Y'', Y', I'', I'', I'; I_3'', I_3' \left| Y, I, I_3 \right\rangle$$

Reduced Matrix Elements (RMEs)

$(8 \otimes 8)_s = (1 \oplus 8 \oplus 27)_s$

$$A_{1} = \langle 3|\overline{3_{1}}|1 \rangle$$

$$A_{8} = \langle 3|\overline{3_{1}}|8 \rangle$$

$$R_{8} = \langle 3|6|8 \rangle$$

$$P_{8} = \langle 3|\overline{15}|8 \rangle$$

$$P_{27} = \langle 3|\overline{15}|27 \rangle$$

$$B_{1} = \langle 3|\overline{3_{2}}|1 \rangle$$

$$B_{8} = \langle 3|\overline{3_{2}}|8 \rangle$$

Advantage of using diagrams

- RMEs' values don't have clear physical interpretation
- \succ RMEs' involve calculation of SU(3) Clebsch-Gordan coefficients

- Diagrams have some physical interpretation
- Diagrams do not involve calculation

But, we have a problem...

Reduced Matrix Elements (RMEs)

$$A_{1} = \langle 3|\overline{3_{1}}|1 \rangle$$

$$A_{8} = \langle 3|\overline{3_{1}}|8 \rangle$$

$$R_{8} = \langle 3|6|8 \rangle$$

$$P_{8} = \langle 3|\overline{15}|8 \rangle$$

$$P_{27} = \langle 3|\overline{15}|27 \rangle$$

$$B_{1} = \langle 3|\overline{3_{2}}|1 \rangle$$

$$B_{8} = \langle 3|\overline{3_{2}}|8 \rangle$$

$$T, C, P_{uc}, A, E, PA_{uc}, P_{tc}, PA_{tc}, P_{EW}, P_{EW}^{c}$$

$$Absorb E$$

$$\tilde{T}, \tilde{C}, \tilde{P}_{uc}, \tilde{A}, \tilde{P}A_{uc}, P_{tc}, PA_{tc}, P_{EW}, P_{EW}^{c}$$

We still have 2 more diagrams than RMEs!

$$P_{EW} = -\frac{3}{4} \left(\frac{c_9 + c_{10}}{c_1 + c_2} \left(\tilde{T} + \tilde{C} + \tilde{A} \right) + \frac{c_9 - c_{10}}{c_1 - c_2} \left(\tilde{T} - \tilde{C} - \tilde{A} \right) \right) \qquad P_{EW}^c = -\frac{3}{4} \left(\frac{c_9 + c_{10}}{c_1 + c_2} \left(\tilde{T} + \tilde{C} - \tilde{A} \right) - \frac{c_9 - c_{10}}{c_1 - c_2} \left(\tilde{T} - \tilde{C} - \tilde{A} \right) \right)$$

$$A_{1} = \langle 3 | \overline{3_{1}} | 1 \rangle$$

$$A_{8} = \langle 3 | \overline{3_{1}} | 8 \rangle$$

$$R_{8} = \langle 3 | 6 | 8 \rangle$$

$$P_{8} = \langle 3 | \overline{15} | 8 \rangle$$

$$P_{27} = \langle 3 | \overline{15} | 27 \rangle$$

$$B_{1} = \langle 3 | \overline{3_{2}} | 1 \rangle$$

$$B_{8} = \langle 3 | \overline{3_{2}} | 8 \rangle$$

 \tilde{T} \tilde{C} \tilde{P}_{uc} \tilde{A} $\tilde{P}A_{uc}$ P_{tc} PA_{tc}

Equivalence between RMEs and diagrams

- Describe the decays:
 - In terms of RMEsIn terms of diagrams
- ➢ Make an augmented matrix

≻Row reduce

$$A_{1} = \frac{1}{2\sqrt{3}} \left(-3\tilde{T} + \tilde{C} - 8\tilde{P}_{uc} - 12\tilde{P}\tilde{A}_{uc} \right)$$

$$A_{8} = \frac{1}{8} \sqrt{\frac{5}{3}} \left(-3\tilde{T} + \tilde{C} - 8\tilde{P}_{uc} - 3\tilde{A} \right)$$

$$R_{8} = \frac{\sqrt{5}}{4} \left(\tilde{T} - \tilde{C} - \tilde{A} \right)$$

$$P_{8} = \frac{1}{8\sqrt{3}} \left(\tilde{T} + \tilde{C} + 5\tilde{A} \right)$$

$$P_{27} = -\frac{1}{2\sqrt{3}} \left(\tilde{T} + \tilde{C} \right)$$

$$B_{1} = -\frac{4}{\sqrt{3}} \left(\frac{3}{2} P A_{tc} + P_{tc} \right)$$

$$B_{8} = -\sqrt{\frac{5}{3}} P_{tc}$$