

First Measurement of VH in Full Hadronic Final State with the ATLAS Detector

DPF-PHENO 2024 (Pittsburgh)

Zhi ZHENG (SLAC National Accelerator Laboratory) 05/16/2024

Higgs: touches most of our deepest question in the universe

Higgs as a probe to New Physics

Differential measurements might uncover Beyond Standard Model (BSM) phenomena hidden within the cross-section measurements.

- Higgs p_T is one of the key observables
- Higgs in the High p_T region are sensitive to BSM effect

Why All-Hadronic Higgs in Boost region

Increased interests in understanding dynamic properties of the Higgs

- $b\bar{b}$ decay is the largest branching fraction (~60%), and has statistics to check Higgs in the high p_T region
- p_T^H differential measurement of Higgs boson in $b\bar{b}$ decay channel in both ATLAS and CMS

Why All-Hadronic Higgs in Boost region

Increased interests in understanding dynamic properties of the Higgs

• All production modes contribution similarly toward $p_T^H \sim 1 \text{ TeV}$

Understanding each production mechanism in High p_T regime for Higgs Boson is important

Higgs in the Boost Region: ttH

Understanding each production mechanism in high p_T regime for the Higgs boson

• ATLAS measured Higgs p_T in ttH production

Higgs in the Boost Region: VBF and ggF

Understanding each production mechanism in high p_T regime for the Higgs boson

 Recent result by CMS on VBF and ggF production in high momentum regime

<u>CMS-PAS-HIG-21-020</u>

Higgs in the Boost Region: $V(\rightarrow leptons)H$

Understanding each production mechanism in high p_T regime for the Higgs boson

ATLAS boosted VH

 Observed (expected) significance for $p_T^V > 250$ GeV: 2.1(2.7) σ

Phys. Lett. B 816 (2021) 136204

Higgs in the Boost Region: $V(\rightarrow leptons)H$

Understanding each production mechanism in high p_T regime for the Higgs boson

ATLAS boosted VH

• Limited stats in the $p_T^H > 400$ GeV

Phys. Lett. B 816 (2021) 136204

Higgs in the Boost Region: $V(\rightarrow qq)H$

Understanding each production mechanism in high p_T regime for the Higgs boson

- Why V(→qq)H?
 - Signal events increase by a factor of two in all hadronic channel compare with V(→ leptons) H

Why VH → qqbb: Anti-kt (R=1.0) Jets

Advancement of **novel jets substructure** enabled searches for $H \rightarrow bb$ in hadronic final states despite the large irreducible QCD background

$H \rightarrow bb tagger$

$H \rightarrow b\bar{b}$ tagger: <u>ATL-PHYS-PUB-2020-019</u>

- Neural Network using track & vertex info associated to variable radius track-jets
- Fixed 60% H $\rightarrow b\bar{b}$ efficiency used

V tagger:

V tagger: ATL-PHYS-PUB-2020-017

• Requirements on jet mass, two-prongness & number of tracks yields a signal efficiency of 50%

Event Selection

Proton-proton collision data collected by ATLAS detector from 2015-2018

 \bullet Integrated luminosity of 137 $\rm fb^{-1}$ at 13 TeV

Single large-R (R=1.0 anti- k_t) jet trigger with Mass and p_T threshold

At least **two large-R jets** p_T > 200 GeV & $|\eta|$ <2

- p_T leading jet: p_T > 450, M_J > 60 GeV
- Second p_T leading jet: M_J > 40 GeV

Events with isolated charges leptons are rejected

Event Selection:

Signal Region: Signal & Background composition

In SR, VH production mechanism dominates: ~ 85%

• $t\bar{t}H$ (8%), ggF (6%), VBF (1.4%)

Signal Region: Signal & Background composition

In SR, VH production mechanism dominates: ~ 85%

• $t\bar{t}H$ (8%), ggF (6%), VBF (1.4%)

Background dominated by multi-jets production (90%)

• *tt*(5%), VV(0.7%), V+jets (3.6%)

Key is to have full control of multi-jets background estimation

• Two data-driven estimations in place

Multi-Jet Background Estimation

Aim to predict the multijet mass distribution in the pass $H \rightarrow bb$ tagger using event in fail- $H \rightarrow bb$ tagger region:

Events passing $H \rightarrow bb$ tagger = events failing the $H \rightarrow bb$ tagger ×transfer factor (TF)

First measurement of VH in full hadronic channel

Fit results First measurement of VH in full hadronic channel

Observed VH signal strength: $\mu_{VH} = 1.39^{+1.02}_{-0.88}$

- Observed significance for rejection of null-signal hypothesis 1.7σ (1.2σ expected)
- Corresponding to an observed cross-cross section: $3.1 \pm 1.3(\text{stat})^{+1.8}_{-1.4}(\text{syst})$ pb

Systematics uncertainties dominate by shape of multi-jet data-driven estimate (statistically nature) & $H \rightarrow b\bar{b}$ tagger scale factors

Kinematic region	Observed μ	Observed σ [fb]		Expected σ [fb]
$250 \le p_{\rm T}^H < 450 \text{ GeV}, y_H < 2$	$0.8^{+2.2}_{-1.9}$	47^{+125}_{-109}	(<363)	57.0
$450 \le p_{\rm T}^H < 650 \text{ GeV}, y_H < 2$	$0.4^{+1.7}_{-1.5}$	2^{+10}_{-9}	(< 24)	5.9
$p_{\rm T}^H \ge 650 \text{ GeV}, y_H < 2$	$5.3^{+11.3}_{-3.2}$	6^{+13}_{-4}	(< 43)	1.2

Summary

There are many efforts to study regions highly sensitive to the new physics: especially high p_T^H region

We have presented the first measurement of VH in full hadronic channel

Observed VH signal strength:

$$\mu_{VH} = 1.39^{+1.02}_{-0.88}$$

Further details in Phys. Rev. Lett. 132 (2024) 131802

THANK YOU FOR LISTENING

HL-LHC (Inner TracKer)

Simplified Template Cross Section (STXS)

STXS is an approach to categorize the Higgs-boson candidate events according to the properties associated with the Higgs production mode

Aim to minimize theory dependency while maximizing sensitivity to BSM effects

On-going effects to cooperate $V(\rightarrow qq)$ H into next stage STXS

• Include more sensitive region for EFT interpretation

ZHI ZHENG

