Neutrino Mass and Gravitational Wave

Arnab Dasgupta, Tao Han, Tong Arthur Wu

$$y_{\nu}L\tilde{H}\nu_R + \text{h.c.} \rightarrow \frac{y_{\nu}v}{\sqrt{2}} \left(\nu_L\nu_R + \nu_R\nu_L\right)$$

$$y_{\nu}L\tilde{H}\nu_R + \text{h.c.} \rightarrow \underbrace{\frac{y_{\nu}v}{\sqrt{2}}}_{m_{\nu}} (\nu_L\nu_R + \nu_R\nu_L)$$

 $\longrightarrow m_{\nu} < 0.1 \text{eV} \implies y_{\nu} \sim 10^{-13}$ Unnaturally small parameter!

$$y_{\nu}L\tilde{H}\nu_R + \text{h.c.} \rightarrow \underbrace{\frac{y_{\nu}v}{\sqrt{2}}}_{m_{\nu}}(\nu_L\nu_R + \nu_R\nu_L)$$

 $\implies m_{\nu} < 0.1 \text{eV} \implies y_{\nu} \sim 10^{-13}$ Unnaturally small parameter!

Inverse seesaw mechanism:

$$y_{\nu}L\tilde{H}\nu_R + M\nu_RS + \frac{1}{2}\mu SS + \text{h.c.} \rightarrow \frac{1}{2}\left(\nu_L \ \nu_R \ S\right) \begin{pmatrix} 0 & \frac{y_{\nu}v}{\sqrt{2}} & 0 \\ \frac{y_{\nu}v}{\sqrt{2}} & 0 & M \\ 0 & M & \mu \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \\ S \end{pmatrix} + \text{h.c.}$$

$$y_{\nu}L\tilde{H}\nu_R + h.c. \rightarrow \underbrace{\frac{y_{\nu}v}{\sqrt{2}}}_{m_{\nu}}(\nu_L\nu_R + \nu_R\nu_L)$$

 $\implies m_{\nu} < 0.1 eV \implies y_{\nu} \sim 10^{-13}$ Unnaturally small parameter!

Inverse seesaw mechanism:

$$y_{\nu}L\tilde{H}\nu_{R} + M\nu_{R}S + \frac{1}{2}\mu SS + \text{h.c.} \rightarrow \frac{1}{2}\left(\nu_{L} \ \nu_{R} \ S\right) \begin{pmatrix} 0 & \frac{y_{\nu}v}{\sqrt{2}} & 0 \\ \frac{y_{\nu}v}{\sqrt{2}} & 0 & M \\ 0 & M & \mu \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \nu_{R} \\ S \end{pmatrix} + \text{h.c.}$$

 $\longrightarrow m_{\nu} = \frac{\mu}{2}(\frac{y_{\nu}v}{M})^{2} \longrightarrow \text{Natural suppression}$

Model

Scalar induced mass term:

$$V_{\text{eff}}(\phi, T) = V_{\text{tree}}(\phi) + V_{1-\text{loop}}(\phi) + V_T(\phi, T) + V_{\text{daisy}}(\phi, T)$$

Relevant parameters

nucleation rate:
$$\Gamma(T) \sim T^4 \left(\frac{S_3(\phi, T)}{2\pi T}\right)^{3/2} e^{-S_3(\phi, T)/T}$$

 $S_3(\phi, T) = \int d^3x \left[\frac{1}{2}(\nabla \phi)^2 + V_{\text{eff}}(\phi, T)\right]$

nucleation temperature:

$$T_n$$
 when $\left. \frac{\Gamma(T)}{H(T)^4} \right|_{T=T_n} = 1$ (one bubble per Hubble radius)

vacuum energy density:

$$\alpha = \frac{1}{\rho_{\rm rad}} \left(-1 + T \frac{\mathrm{d}}{\mathrm{d}T} \right) \Delta V_{\rm eff} \bigg|_{T=T_n}$$

inverse timescale:

$$\frac{\beta}{H} = -\frac{T}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}T} \bigg|_{T=T_n}$$

bubble-wall velocity:

$$\mathcal{U}_{\mathcal{W}} = \begin{cases} \sqrt{\frac{\Delta V_{\text{eff}}}{\alpha \rho_{\text{rad}}}} & \text{for } \frac{\Delta V_{\text{eff}}}{\alpha \rho_{\text{rad}}} < v_J \\ 1 & \text{for } \frac{\Delta V_{\text{eff}}}{\alpha \rho_{\text{rad}}} > v_J \end{cases}$$

Gravitational wave spectrum

$$\begin{split} h^2 \Omega_{\rm GW}(f) &= h^2 \Omega_b(f) + h^2 \Omega_s(f) + h^2 \Omega_t(f) \\ \text{collisions of bubble walls sound waves turbulence} & \\ & || & || & || \\ \text{magnitude } {}_{1.67 \times 10^{-5} \left(\frac{v_w}{\beta/H}\right)^2 \left(\frac{100}{g(T_n)}\right)^{1/3} \left(\frac{\kappa_b \alpha}{1+\alpha}\right)^2 \left(\frac{0.11v_w}{0.42+v_w^2}\right)} & {}_{2.65 \times 10^{-6} \left(\frac{v_w}{\beta/H}\right) \left(\frac{100}{g(T_n)}\right)^{1/3} \left(\frac{\kappa_s \alpha}{\beta/H}\right) \left(\frac{100}{g(T_n)}\right)^{1/3} \left(\frac{\kappa_t \alpha}{1+\alpha}\right)^{3/2}} \\ & \\ \text{shape} \\ \text{function} & \left(\frac{f}{f_b}\right)^{2/8} \left(\frac{3.8}{1+2.8(f/f_b)^{3/8}}\right) & \left(\frac{f}{f_s}\right)^3 \left(\frac{7}{4+3(f/f_s)^2}\right)^{7/2} & \left(\frac{f}{f_t}\right)^3 \left(\frac{1}{1+(f/f_t)}\right)^{11/3} \left(\frac{1}{1+8\pi f/h_*}\right) \end{split}$$

Obtained from simulation
Parametrized by T_n , α , β , v_w

$$\mathcal{L}_{\text{scalar}} \supset \mu_{\sigma}^{2} |\boldsymbol{\sigma}|^{2} - \lambda_{\sigma} |\boldsymbol{\sigma}|^{4} + \mu_{\phi}^{2} |\boldsymbol{\phi}|^{2} - \lambda_{\phi} |\boldsymbol{\phi}|^{4} - \lambda_{\sigma\phi} |\boldsymbol{\sigma}|^{2} |\boldsymbol{\phi}|^{2} - (\mu \boldsymbol{\phi}^{*} \boldsymbol{\sigma}^{2} + \text{h.c.})$$
$$\mathcal{L}_{\text{Yukawa}} \supset - \left[y_{\nu} L \tilde{H} \nu_{R} + \left(y_{\sigma} \,\boldsymbol{\sigma} \,\nu_{R} S + \bar{y}_{\sigma} \,\boldsymbol{\sigma}^{*} \nu_{R} \bar{S} \right) + \left(y_{\phi} \,\boldsymbol{\phi} S S + \bar{y}_{\phi} \,\boldsymbol{\phi}^{*} \bar{S} \bar{S} \right) + \text{h.c.} \right]$$

$$\mathcal{L}_{\text{scalar}} \supset \mu_{\sigma}^{2} |\boldsymbol{\sigma}|^{2} - \lambda_{\sigma} |\boldsymbol{\sigma}|^{4} + \mu_{\phi}^{2} |\boldsymbol{\phi}|^{2} - \lambda_{\phi} |\boldsymbol{\phi}|^{4} - \lambda_{\sigma\phi} |\boldsymbol{\sigma}|^{2} |\boldsymbol{\phi}|^{2} - (\mu \boldsymbol{\phi}^{*} \boldsymbol{\sigma}^{2} + \text{h.c.})$$
$$\mathcal{L}_{\text{Yukawa}} \supset -\left[y_{\nu} L \tilde{H} \nu_{R} + \left(y_{\sigma} \,\boldsymbol{\sigma} \,\nu_{R} S + \bar{y}_{\sigma} \,\boldsymbol{\sigma}^{*} \nu_{R} \bar{S} \right) + \left(y_{\phi} \,\boldsymbol{\phi} S S + \bar{y}_{\phi} \,\boldsymbol{\phi}^{*} \bar{S} \bar{S} \right) + \text{h.c.} \right]$$

Phase transition:

$$\mathcal{L}_{\text{scalar}} \supset \mu_{\sigma}^{2} |\boldsymbol{\sigma}|^{2} - \lambda_{\sigma} |\boldsymbol{\sigma}|^{4} + \mu_{\phi}^{2} |\boldsymbol{\phi}|^{2} - \lambda_{\phi} |\boldsymbol{\phi}|^{4} - \lambda_{\sigma\phi} |\boldsymbol{\sigma}|^{2} |\boldsymbol{\phi}|^{2} - (\mu \boldsymbol{\phi}^{*} \boldsymbol{\sigma}^{2} + \text{h.c.})$$
$$\mathcal{L}_{\text{Yukawa}} \supset - \left[y_{\nu} L \tilde{H} \nu_{R} + \left(y_{\sigma} \,\boldsymbol{\sigma} \,\nu_{R} S + \bar{y}_{\sigma} \,\boldsymbol{\sigma}^{*} \nu_{R} \bar{S} \right) + \left(y_{\phi} \,\boldsymbol{\phi} S S + \bar{y}_{\phi} \,\boldsymbol{\phi}^{*} \bar{S} \bar{S} \right) + \text{h.c.} \right]$$

Phase transition:

$$\mathcal{L}_{\text{scalar}} \supset \mu_{\sigma}^{2} |\boldsymbol{\sigma}|^{2} - \lambda_{\sigma} |\boldsymbol{\sigma}|^{4} + \mu_{\phi}^{2} |\boldsymbol{\phi}|^{2} - \lambda_{\phi} |\boldsymbol{\phi}|^{4} - \lambda_{\sigma\phi} |\boldsymbol{\sigma}|^{2} |\boldsymbol{\phi}|^{2} - (\mu \boldsymbol{\phi}^{*} \boldsymbol{\sigma}^{2} + \text{h.c.})$$

$$\mathcal{L}_{\text{Yukawa}} \supset - \left[y_{\nu} L \tilde{H} \nu_{R} + \left(y_{\sigma} \,\boldsymbol{\sigma} \,\nu_{R} S + \bar{y}_{\sigma} \,\boldsymbol{\sigma}^{*} \nu_{R} \bar{S} \right) + \left(y_{\phi} \,\boldsymbol{\phi} S S + \bar{y}_{\phi} \,\boldsymbol{\phi}^{*} \bar{S} \bar{S} \right) + \text{h.c.} \right]$$

Phase transition:

Benchmark parameters:

	v_{σ}/GeV	$v_{\phi}/{ m GeV}$	λ_{σ}	λ_{ϕ}	$\lambda_{\sigma\phi}$	g_D	y_v	y_{σ}	y_{ϕ}
BM1	10000	1.4×10^{-5}	0.0003	0.2	0.02	0.6	0.04	0.1	0.1
BM2	10000	7.3×10^{-6}	0.0001	0.2	0.02	0.3	0.04	0.1	0.1
BM3	3000	2.5×10^{-5}	0.0001	1	0.02	0.6	0.04	0.05	0.4

$$\mathcal{L}_{\text{scalar}} \supset \mu_{\sigma}^{2} |\boldsymbol{\sigma}|^{2} - \lambda_{\sigma} |\boldsymbol{\sigma}|^{4} + \mu_{\phi}^{2} |\boldsymbol{\phi}|^{2} - \lambda_{\phi} |\boldsymbol{\phi}|^{4} - \lambda_{\sigma\phi} |\boldsymbol{\sigma}|^{2} |\boldsymbol{\phi}|^{2} - (\mu \boldsymbol{\phi}^{*} \boldsymbol{\sigma}^{2} + \text{h.c.})$$
$$\mathcal{L}_{\text{Yukawa}} \supset -\left[y_{\nu} L \tilde{H} \nu_{R} + \left(y_{\sigma} \boldsymbol{\sigma} \nu_{R} S + \bar{y}_{\sigma} \boldsymbol{\sigma}^{*} \nu_{R} \bar{S} \right) + \left(y_{\phi} \boldsymbol{\phi} S S + \bar{y}_{\phi} \boldsymbol{\phi}^{*} \bar{S} \bar{S} \right) + \text{h.c.} \right]$$

Benchmark parameters:

	v_{σ}/GeV	v_{ϕ}/GeV	λ_{σ}	λ_{ϕ}	$\lambda_{\sigma\phi}$	g_D	$y_{m v}$	y_{σ}	y_{ϕ}
BM1	10000	1.4×10^{-5}	0.0003	0.2	0.02	0.6	0.04	0.1	0.1
BM2	10000	7.3×10^{-6}	0.0001	0.2	0.02	0.3	0.04	0.1	0.1
BM3	3000	2.5×10^{-5}	0.0001	1	0.02	0.6	0.04	0.05	0.4

Collider signal from seesaw model

	m_{ν}/eV	$m_N/{ m GeV}$	$m_{\sigma}/{ m GeV}$	$m_{\phi}/{ m GeV}$	U
BM1	0.09	707	526	812	0.007
BM2	0.05	707	160	985	0.007
BM3	0.06	849	255	234	0.006

Complementarity

Conclusion

- Seesaw model + scalar fields ⇒ strong gravitational waves
- Gravitational wave observation is highly complementary to collider searches

Thank you!